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Abstract— This paper proposes a novel control scheme based

on the joint use of decentralized Sliding Mode (SM) control and

distributed averaging control for cooperative voltage regulation

in Alternate Current (AC) microgrids. The considered model

of the microgrid includes several Distributed Generation Units

(DGUs) interconnected through resistive-inductive power lines.

In each DGU a Voltage Sourced Converter (VSC) supplies an

unknown current load. The proposed control strategy consists

of two different control schemes. A decentralized SM control

scheme constrains the state of the microgrid on a suitable

manifold where the q-component of the voltage of each DGU is

equal to zero. On this manifold, the d-component of the control

input is generated by distributed controllers aimed at sharing

the d-component of the generated current and preserving the

average of the microgrid voltages. Global convergence to a

desired steady state is proven and simulation results confirm

the effectiveness of the proposed solution.

I. INTRODUCTION

Recently, due to the wide diffusion of Renewable En-
ergy Sources (RES), power generation and distribution are
rapidly changing towards sustainable and environmental
friendly small-scale power systems known as microgrids. The
emerging microgrids are clusters of Distributed Generation
Units (DGUs), energy storage systems and loads, which are
interconnected through power lines [1]. Voltage and frequency
stability are the main control objectives in AC microgrids
that work disconnected from the main grid, which would
otherwise play the role of an infinite power source fixing
voltage amplitude and frequency at the point of common
coupling. However, the unpredictable power generation of
RES and the unknown load dynamics require the design of
robust and advanced control strategies, providing additionally
a form of power sharing. For these reasons, in the recent years,
microgrids have received much attention and are attracting
growing interest within the control and electrical engineering
communities.

A. Literature review and main contributions

Although there exits a vast amount of literature on the
design of control schemes for AC microgrids (see e.g. [2] and
the references therein), there are still some unresolved issues.
For example, achieving provably a form of active and reactive
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power sharing in low voltage AC microgrids with inductive-
resistive distribution lines is still lacking. Indeed, various
approaches assume that the lines are purely inductive [3]–
[6], which is often required to perform the stability analysis.
However, this assumption is generally not valid in low voltage
microgrids, where the line resistance is not negligible. On
the other hand, for fairly general AC microgrid models, the
focus has been on provably achieving only one objective,
such as voltage regulation [7]–[9]. This paper provides some
new results for AC microgrids that are mostly resistive, with
a strong coupling between the active power generation and
the voltage levels at the DGUs [10], [11]. Particularly, under
the assumption of synchronization among the converters, we
propose a distributed control scheme to regulate the average
voltage in the network, while sharing generated currents
associated to the active power generation fairly among the
sources. We elaborate on two contributions below.
1) We consider voltage regulation for a three-phase AC
microgrid in the dq-coordinate frame, including inductive-
resistive lines. The q-component of the voltage at each DGU
is controlled to zero to decouple the active and reactive
power generation. This is achieved by a suitably designed
third-order sliding mode control strategy [12], providing a
continuous signal suitable for a Pulse Width Modulation
(PWM) implementation. The d-component of the voltage
is then controlled by a distributed integral control, sharing
the d-component of the generated current and achieving an
average voltage regulation, where the average of the voltage
magnitudes at the DGUs is identical to the desired value.
2) We provide a provably stabilizing control scheme, where
global convergence to a desired state is shown. Particularly,
the combined use of sliding mode and distributed integral
control appears to be powerful, enabling new perspectives
on possible controller designs. Besides the theoretical con-
vergence guarantees, a case study indicates that also the
performance of the proposed control scheme is good.

II. AC MICROGRID MODEL

In this work we consider a connected three-phase AC mi-
crogrid, consisting of n nodes, where every node corresponds
to a Distributed Generation Unit (DGU) including a Voltage
Sourced Converter (VSC) and a load*, which is assumed to
be unknown. Note that such a network might be a result
of reduction methods, such as Kron/Ward reduction [13]†.
We make the following assumption (common for stability
purposes) on the considered model [7]–[9]:

*We consider constant current loads operating at nominal frequency.
†It is therefore important that possible control schemes are independent

of the topology of the microgrid model.
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Fig. 1. Electrical single-line diagram of DGU i and line k of a typical
islanded AC microgrid.

TABLE I
DESCRIPTION OF THE USED SYMBOLS

ıt Generated current
v Load voltage
ı Line current

Rt Filter resistance
Lt Filter inductance
Ct Shunt capacitor
R Line resistance
L Line inductance
f0 Microgrid nominal frequency

u Control input
ıL Unknown current demand

Assumption 1 (Operating conditions) The microgrid is

balanced and symmetric.

The dynamics of phase a at the i-th node are then given by

Ctiv̇ai = ıtai +
X

k2Ei

ıak � ıLai

Lti ı̇tai = �Rtiıtai � vai + uai,

(1)

where Ei is the set of lines adjacent to node i. The remaining
symbols are defined in Table I (see also Figure 1). The
distribution lines are assumed to be resistive-inductive and
consequently, the dynamics of phase a at the k-th line,
connecting node i and node j, is given by

Lk ı̇ak = vai � vaj �Rkıak. (2)

The dynamics of phase b and phase c are defined similarly.
To obtain an overall model describing the microgrid, we
represent its topology by an undirected graph G = (V, E),
with nodes V = {1, ..., n} and edges E = {1, ...,m}. The
network topology can then be represented by its corresponding
incidence matrix B 2 Rn⇥m, which is obtained by labelling
the ends of edge k arbitrarily with a + and a �, and defining

Bik :=

8
><

>:

+1 if node i is at the positive end of k
�1 if node i is at the negative end of k
0 otherwise .

Next, we also define v := (vTa , v
T
b , v

T
c )

T . Vectors ıt, ı, ıL and
u are defined similarly. The dynamic equations governing

the network can now be expressed as
(I3 ⌦ Ct)v̇ = ıt + (I3 ⌦ B)ı � ıL

(I3 ⌦ Lt)ı̇t = �(I3 ⌦Rt)ıt � v + u

(I3 ⌦ L)ı̇ = �(I3 ⌦ BT
)v � (I3 ⌦R)ı,

(3)

where ⌦ denotes the Kronecker product and I3 2 R3⇥3

denotes the identity matrix. Matrices Ct, Lt, Rt 2 Rn⇥n

and L,R 2 Rm⇥m are diagonal and positive definite. Since
in low voltage AC microgrids the lines are predominately
resistive, there is a strong coupling between the active power
and the voltage magnitude [10], [11]. Then, we aim to control
the voltages by proper regulation of the active power, and
regard the control of reactive power, which is strongly coupled
to the frequency, to be outside of the scope of this paper.
Following e.g. [7]–[9], [14], we assume that the frequency in
the network is controlled in open-loop by equipping each VSC
with an internal oscillator that provides the phase angle �(t) =R t
t0
!0d⌧ , with !0 = 2⇡f0, f0 being the nominal frequency

of the microgrid, leading to the following assumption:

Assumption 2 (Clock synchronization) All clocks of local

controllers are synchronized
‡
.

Under Assumptions 1 and 2, the three-phase variables of
system (3) can be transformed to the rotating dq-frame by
the so-called Clarke’s and Park’s transformations [17]. As a
result, system (3) can be equivalently represented as

CtV̇d = !0CtVq + Itd + BId � ILd

CtV̇q = �!0CtVd + Itq + BIq � ILq

Ltİtd = �Vd �RtItd + !0LtItq + ud

Ltİtq = �Vq � !0LtItd �RtItq + uq

Lİd = �BTVd �RId + !0LIq

Lİq = �BTVq � !0LId �RIq.

(4)

In the rotating dq-frame, the states of (4) represent the
(real) component d and the (imaginary) component q of
the corresponding three-phase signals, e.g. Vd and Vq are the
dq-components of v, respectively.

Remark 1 (Additional load nodes) Mutatis mutandis, the

results derived in this work can also incorporate nodes VL =

{1, ..., nL} representing constant impedance and constant

current loads (ZI–loads), where the dynamic behaviour of

load node i 2 VL is given by

CtiV̇di = !0CtiVqi +

X

k2Ei

Idk � ILdi �
Vdi

RLi

CtiV̇qi = �!0CtiVdi +

X

k2Ei

Iqk � ILqi �
Vqi

RLi
,

(5)

RLi being the resistance of the constant impedance load.

Since the required modification are fairly straightforward, we

focus on system (4) for the sake of exposition.

‡In [14], a synchronization via GPS is proposed, achieving an accuracy
higher than 1 µs. Moreover, currently available (low-cost) internal oscillators
are characterized by an accuracy in the range of 20ps–2 µs per year [15],
[16].



III. COOPERATIVE VOLTAGE REGULATION

In this section we formulate the considered control objec-
tive of cooperative voltage regulation. First we recall for the
readers’ convenience, the expressions for active power Pi

and reactive power Qi at a node, using the dq coordinates:

Pi =
3

2
(VdiItdi+VqiItqi), Qi =

3

2
(VqiItdi�VdiItqi). (6)

As a first step it appears to be convenient to decouple
the active and reactive power control, by requiring Vq to
be regulated to zero. Consequently (6) becomes Pi =
3
2VdiItdi, Qi = � 3

2VdiItqi, and one can notice that the
active power Pi depends on the generated direct current
Itdi, whereas the reactive power Qi does not. We make this
decoupling explicit in the following objective:

Objective 1 (Active and reactive power decoupling)

lim
t!1

Vq(t) = V q = 0. (7)

When Objective 1 is achieved, for given ILd, ILq and
constant inputs ud, uq, a steady state solution (V d, V q =

0, Itd, Itq, Id, Iq) to system (4) satisfies

ILd � Itd = BId (8a)
ILq � Itq = �!0CtV d + BIq (8b)

V d = �RtItd + !0LtItq + ud (8c)
0 = �!0LtItd �RtItq + uq (8d)
Id = �R�1BTV d + !0R

�1LIq (8e)
Iq = �!0R

�1LId (8f)

From (8a) it follows§ that the steady state value of the
total generated direct current 1T Itd is equal to the total
current 1T ILd demanded by resistive loads. To avoid the
overstressing of a source, we propose to share the total
generated direct current fairly (proportionally to their capacity)
among various sources:

Objective 2 (Direct current sharing)

lim
t!1

Itd(t) = Itd = W�11i⇤t , (9)

with W = diag(w1, . . . , wn), wi > 0, for all i 2 V and

i⇤t 2 R.

Here, the weights in W are related to the capacity of the
DGUs, where a relatively large value of wi corresponds to a
relatively small generation capacity of DGU i. Indeed, the
achievement of Objective 2 implies that at the steady state
wiItdi = wjItdj for all i, j 2 V . Furthermore, from (8) it
follows that necessarily i⇤t = 1T ILd/1TW�11. Lastly, we
consider voltage regulation and make the assumption that
there exists a desired voltage magnitude at each DGU:

Assumption 3 (Desired voltages) There exists a reference

voltage magnitude |V ?
i | =

q
(V ?

di)
2 + (V ?

qi)
2 at the PCC, for

all i 2 V .

§The incidence matrix B, satisfies 1TB = 0, where 1 2 Rn is the vector
consisting of all ones.

Note that achieving Objective 1 implies that the desired volt-
age magnitude is completely described by the d-component
of the voltage, i.e. |V ?

i | = V ?
di. For this reason, the voltage

regulation objective will be formulated in terms of Vd. Due
to Objective 2, some deviations from the desired voltage
levels are needed. Indeed, from equations (8a), (8e) and (8f)
it straightforwardly follows that the steady state voltage V d

satisfies B(I + !2
0R

�2L2
)
�1R�1BTV d = W�11i⇤t � ILd.

This generally prohibits that the steady state voltage is
identical to the desired value V ?

d . However, there is still
freedom to shift all the steady state direct voltages with the
same constant value, since BTV d = BT

�
V d + a1

�
, with

a 2 R any scalar. We formulate therefore the objective of
average voltage regulation. Following the standard practise
where the sources with the largest generation capacity
determine the microgrid voltage, we select a weight of 1/wi

for all i 2 V:

Objective 3 (Average voltage regulation)

lim
t!1

1TW�1Vd(t) = 1TW�1V d = 1TW�1V ?
d . (10)

IV. THE PROPOSED SOLUTION

To design a control scheme achieving the objectives
discussed in the previous section, we make the following
assumption on the available microgrid parameters and mea-
surements:

Assumption 4 (Available information) The value of the fil-

ter resistance Rti and inductance Lti are known at converter

i 2 V . Furthermore, the generated current ıti and the PCC

voltage vi are measured at converter i 2 V .

The solution we propose in this section will consists of two
separate components, controlling the inputs ud and uq. In
the coming subsection, inspired by the distributed averaging
controller for DC microgrids proposed in [18], [19], we design
a distributed averaging controller generating ud aiming at
achieving Objectives 2 and 3. Thereafter, we design uq in a
decentralized fashion in order to achieve Objective 1.

A. Distributed averaging control

First, in order to achieve Objective 2 and Objective 3, we
design a distributed controller at node i 2 V of the form

T✓i✓̇i =�
X

j2N c
i

�ij(wiItdi � wjItdj)

T�i�̇i =� �i + Itdi

udi =�Ki(Itdi � �i) + wi

X

j2N c
i

�ij(✓i � ✓j)

+ V ?
di +RtiItdi � !0LtiItqi,

(11)

with T✓i, T�i,Ki 2 R>0. The set N c
i is the set of VSCs

connected to VSC i via a communication network, with
edge weights �ij = �ji 2 R>0. Note that the controller is
distributed as it prescribes the exchange of information on Itd
and ✓ among neighboring nodes. Similar to the topology of the
microgrid, the overall communication network is represented



by a connected and undirected graph Gc
= (Vc, Ec

), where
Vc

= V and the edges, Ec
= {1, ...,mc}, represent the

communication links between the DGUs. The communication
network topology is described by its corresponding incidence
matrix Bc 2 Rn⇥mc , which is defined similarly as B. The
overall control scheme can be compactly written for all i 2 V
as

T✓ ✓̇ =� LcWItd (12a)

T��̇ =� �+ Itd (12b)
ud =�K(Itd � �) +WLc✓

+ V ?
d +RtItd � !0LtItq, (12c)

where T✓, T�,K 2 Rn⇥n are positive definite diagonal
matrices. Furthermore, Lc

= Bc
�(Bc

)
T is the (weighted)

Laplacian matrix associated to the communication network
and � 2 Rmc⇥mc is a positive definite diagonal matrix
describing the weights on the edges. Then, the closed-loop
system of (4) interconnected with the distributed controller
(12) is given by

CtV̇d = !0CtVq + Itd + BId � ILd

CtV̇q = �!0CtVd + Itq + BIq � ILq

Ltİtd = �Vd �K(Itd � �) +WLc✓ + V ?
d

Ltİtq = �Vq � !0LtItd �RtItq + uq

Lİd = �BTVd �RId + !0LIq

Lİq = �BTVq � !0LId �RIq

T✓ ✓̇ = �LcWItd

T��̇ = ��+ Itd,

(13)

where uq will be designed in a decentralized way in the next
subsection to achieve Objective 1.

B. Decentralized sliding mode control

Now, in order to achieve also Objective 1, we propose
decentralized third-order Sliding Mode (SM) controllers to
steer, in a finite time Tr, the state of system (13) to the
following desired manifold:

{(Vd, Vq, Itd, Itq, Id, Iq, ✓,�) : Vq = V̇q = 0}. (14)

Consequently, we consider the following sliding function:

�(Vq) = Vq. (15)

Regarding (15) as the output function of system (4), it appears
that the relative degree¶ is two. This implies that a second-
order SM controller can be naturally applied in order to
make the state of the controlled system reach, in a finite
time, the manifold (14). However, this approach generates a
discontinuous control signal and, as a consequence, the IGBTs
switching frequency cannot be a-priori fixed and the power
losses could be high. Then, to obtain a continuous control
input permitting a Pulse Width Modulation (PWM) implemen-
tation, we adopt the procedure suggested e.g. in [20] and [21]
for controlling boost and buck converters, respectively. This

¶ The relative degree is the minimum order ⇢ of the time derivative
�
(⇢)
i , i 2 V , of the sliding function associated with the i-th node in which

the control uqi, i 2 V explicitly appears.

procedure consists of integrating the discontinuous control
input generated by a SM controller, i.e.,

CtV̇d = !0CtVq + Itd + BId � ILd

CtV̇q = �!0CtVd + Itq + BIq � ILq

Ltİtd = �Vd �K(Itd � �) +WLc✓ + V ?
d

Ltİtq = �Vq � !0LtItd �RtItq + uq

Lİd = �BTVd �RId + !0LIq

Lİq = �BTVq � !0LId �RIq

T✓ ✓̇ = �LcWItd

T��̇ = ��+ Itd

u̇q = µ,

(16)

where µ is the new (discontinuous) control input. This
procedure indeed ensures that the input signal to the VSC,
uq(t) =

R t
0 µ(⌧)d⌧ , is continuous. Since the system relative

degree with respect to the new control input µ is now equal
to three, it is needed to apply a third-order SM control. To
do this, we define the auxiliary variables ⇠1 = �, ⇠2 = �̇ and
⇠3 = �̈. Then, the dynamics of the corresponding auxiliary
system are given by

⇠̇1 = ⇠2

⇠̇2 = ⇠3

⇠̇3 = � +Bµ

u̇q = µ.

(17)

Bearing in mind hat ⇠̇3 = �(3)
= � + Bµ, the expressions

for the mapping � 2 Rn and matrix B 2 Rn⇥n can be
straightforwardly obtained from (15) by taking the third
derivative of � with respect to time, yielding for the latter||

B = L�1
t C�1

t . Note that, � and B are not completely
known because of possible model uncertainty and unavailable
measurements (see Assumption 4). Then, as usual in classic
SM control theory [22], to permit the controller design, the
following assumption is made on the boundedness of � and B:

Assumption 5 (Bounded uncertainty) �i and Bii in (17)
have known bounds, i.e.,

|�i|  �max
i 8i 2 V

0 < Bmin
i  Bii  Bmax

i 8i 2 V,
(18)

�max
i , Bmin

i and Bmax
i being positive constants.

Then, the 3SM control law proposed in [12] can be used to
steer ⇠1i, ⇠2i and ⇠3i, i 2 V , to zero in a finite time, implying
that the state of system (4) are constrained on the desired
manifold (14) (see [12] for details about the control law).

V. STABILITY ANALYSIS

In this section we first show that the states of (16) are
constrained, after a finite time, to the desired manifold (14),
achieving Objective 1. Thereafter, we prove that the solutions
to (16), once the sliding manifold is attained, converge to a
constant point, achieving also Objectives 2 and 3.

||The expression for � is rather long and is omitted.



Lemma 1 (Achieving Objective 1) Let Assumptions 1–5

hold. Given the sliding function (15), the solutions to system

(16), controlled by the sliding mode control algorithm

proposed in [12], converge in a finite time Tr to the

manifold (14).

The proof directly follows from [23] and [12].

For the analysis of system (16), when the solutions are
constrained to the sliding manifold, it is convenient to exploit
the so-called system order reduction property, typical of
sliding mode control methodology [24].

Lemma 2 (Equivalent reduced order system) Let Assump-

tions 1–5 hold. For all t � Tr, the dynamics of the controlled

system (16) are given by the following equivalent system of

reduced order:

CtV̇d = Itd + BId � ILd

Ltİtd = �Vd �K(Itd � �) +WLc✓ + V ?
d

Lİd = �BTVd �RId + !0LIq

Lİq = �!0LId �RIq

T✓ ✓̇ = �LcWItd

T��̇ = ��+ Itd,

(19)

together with the following algebraic relations:

Vq = 0 (20)
Itq = !0CtVd � BIq + ILq. (21)

Lemma 2 can be straightforwardly proved by exploiting the
result of Lemma 1, i.e., Vq(t) = V̇q(t) = 0 for all t � Tr.

Theorem 1 (Main result) Let Assumptions 1–5 hold. Con-

sider system (16), controlled by the sliding mode control

algorithm proposed in [12]. The solutions to the controlled

system converge asymptotically to a steady steady (V d, V q =

0, Itd, Itq, Id, Iq, ✓,�), achieving power decoupling (Objec-

tive 1), direct current sharing (Objective 2) and average

voltage regulation (Objective 3).

The proof follows from evaluating the quadratic incremental
storage function S =

1
2 (Vd � V d)

TCt(Vd � V d) +
1
2 (Itd �

Itd)TLt(Itd � Itd) +
1
2 (Id � Id)TL(Id � Id) +

1
2 (Iq �

Iq)TL(Iq�Iq)+
1
2 (✓�✓)TT✓(✓�✓)+ 1

2 (���)TT�K(���),
along the solutions to (19), and applying LaSalle’s invariance
principle.

VI. SIMULATION RESULTS

In this section, we test in simulation the proposed con-
trol strategy described in Section IV. We consider an AC
microgrid with nominal frequency f0 = 60Hz, composed
of 4 DGUs in a ring topology as shown in Figure 2, where
also the communication network is depicted. The adopted
microgrid parameters are reported in Tables II and III, and
the weights associated with the communication links are
�12 = �23 = �34 = 1⇥ 10

2. In the distributed controller (12),
we select T✓ = I4, T� = 1⇥ 10

�3 I4, and K = 5 I4,

DGU1

DGU2

DGU4

DGU3

1

4

2

3

�12 �23

�34

Fig. 2. Scheme of the considered microgrid composed of 4 DGus. The
arrows indicate the positive direction of the currents through the power
network. The dashed lines represent the communication network.

TABLE II
MICROGRID PARAMETERS AND CURRENT DEMAND

DGU 1 2 3 4
Rt (m⌦) 40.2 38.7 34.6 31.8
Lt (mH) 9.5 9.2 8.7 8.3
Ct (µF) 62.86 62.86 62.86 62.86
wi – 0.4�1

0.2�1
0.15�1

0.25�1

V ?
d (V) 120

p
2 120

p
2 120

p
2 120

p
2

V ?
q (V) 0 0 0 0

ILd(0) (A) 30.0 15.0 30.0 26.0
ILq(0) (A) �20.0 �15.0 �10.0 �18.0
�ILd (A) 10.0 7.0 �10.0 5.0

TABLE III
LINE PARAMETERS

Line 1 2 3 4
R (⌦) 0.25 0.27 0.24 0.26
L (µH) 1.2 1.3 1.8 2.1

I4 2 R4⇥4 being the identity matrix, while the amplitude
of the sliding mode controller proposed in [12] is equal to
5⇥ 10

3 for all the DGUs. Consider that at the initial time
instant the system is at steady state with current demand
ILd(0), ILq(0). Then, at the time instant t = 1 s, there is a
variation �ILd (see Table II) at the loads. Figures 3 and
4 show that the d-axis voltage at the PCC of each DGU
is regulated in order to achieve proportional direct current
sharing (Objective 2) while guaranteeing that at steady state
the weighted average voltage of the microgrid (denoted by
Vd,av) is equal to the weighted average of voltage references
(Objective 3). Moreover, from the bottom of Figure 3 we
conclude that sliding mode controllers keep the q-component
of the voltage at each PCC equal to zero (Objective 1).

VII. CONCLUSIONS

In this paper, a novel control scheme based on the
combained use of decentralized Sliding Mode (SM) control
and distributed averaging control is proposed for cooperative
voltage regulation in AC microgrids. After constraining the
state of the controlled microgrid on a suitable manifold, global
convergence to a desired steady state is proven independently
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Fig. 3. From the top: d-component of the voltage at the PCC of each DGU;
weighted average value of the d-component of the voltage at the PCC of
each DGU; q-component of the voltage at the PCC of each DGU.
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Fig. 4. From the top: d-component of the generated currents together with
the corresponding values (dashed lines) that correspond to (proportional)
direct current sharing for t > 1; d-component of the line currents.

of the initial conditions of the physical system and the
controller state. Interesting future research includes extensions
towards incorporating reactive power sharing by controlling
the system frequency.
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