Sliding mode voltage control of boost converters in DC microgrids*

Michele Cucuzzellaa,**, Riccardo Lazzarib, Sebastian Tripa, Simone Rostic, Carlo Sandronib, Antonella Ferrarac

aFaculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
bDepartment of Power Generation Technologies and Materials, RSE S.p.A., via Rubattino Raffaele 54, 20134 Milan, Italy
cDipartimento di Ingegneria Industriale e dell’Informazione, University of Pavia, via Ferrata 5, 27100 Pavia, Italy

Abstract

This paper deals with the design of a robust decentralized control scheme for voltage regulation in boost-based DC microgrids. The proposed solution consists of the design of a suitable manifold on which voltage regulation is achieved even in presence of unknown load demand and modelling uncertainties. A second order sliding mode control is used to constrain the state of the microgrid to this manifold by generating continuous control inputs that can be used as duty cycles of the power converters. The proposed control scheme has been theoretically analyzed and validated through experiments on a real DC microgrid.

Keywords: DC Microgrids, Sliding mode control, Decentralized control, Uncertain systems, Voltage regulation.

1. Introduction

Nowadays, due to economical, technological and environmental reasons, the most relevant challenge in power grids deals with the transition of the traditional power generation and transmission systems towards the large scale introduction of smaller Distributed Generation units (DGus) [1, 2, 3, 4]. Moreover, due to the ever-increasing energy demand and the public concern about global warming and climate change, much effort has been focused on the diffusion of environmentally friendly Renewable Energy Sources (RES) [5]. However, it is well known that when several DGus are interconnected to each other, issues such as voltage and frequency deviations arise together with protections problems [2, 6]. In this context, in order to integrate different types of RES and, in addition, electrify remote areas, the so-called microgrids have been proposed as a new concept of electric power systems [7, 8, 9]. Microgrids are electrical distribution networks, composed of clusters of DGus, loads, energy storage systems and energy conversion devices interconnected through power distribution lines and able to operate in islanded and grid-connected modes [10, 11, 12, 13].

Since electrical Alternating Current (AC) has been widely used in most industrial, commercial and residential applications, AC microgrids have attracted the attention of many control system researchers as well as power electronics and electrical engineers [14, 15, 16, 17, 18, 19, 20]. However, several advantages of DC microgrids with respect to AC microgrids are well known [21, 22]. The most important advantage relies on the natural interface of many types of RES, energy storage systems and loads (e.g. photovoltaic panels, batteries, electronic appliances and electric vehicles) with DC network, through DC-DC power converters. For this reason, lossy conversion stages are reduced and consequently DC microgrids are more efficient than AC microgrids. Furthermore, control systems for a DC microgrid are less complex than the ones required for an AC microgrid, where several issues such as synchronization, frequency regulation, reactive power flows, harmonics and unbalanced loads need to be addressed.

DC microgrids can operate in the so-called islanded operation mode to supply an isolated area or can be connected to existing AC networks (e.g. an AC microgrid or the main grid) through a DC-AC bidirectional converter, forming a so-called hybrid microgrid [23, 24], ensuring a high power quality level. Moreover, the growing need of interconnecting remote power...
networks (e.g. off-shore wind farms) has encouraged the use of High Voltage Direct Current (HVDC) technology, which is advantageous not only for long distances, but also for underwater cables, asynchronous networks and grids running at different frequencies [25]. Different control approaches have been investigated in the literature (see for instance [26, 27, 28] and the references therein). Finally, DC microgrids are widely deployed in avionics, data centres, traction power systems, manufacturing industries, and recently used in modern design for ships and large charging facilities for electric vehicles. For all these reasons, DC microgrids are attracting growing interest and receive much attention from the research community.

Two main control objectives in DC microgrids are voltage regulation and current or power sharing. Regulating the voltages is required to ensure a proper operation of connected loads, whereas current or power sharing prevents the over stressing of any source. Typically, both objectives are simultaneously achieved by designing hierarchical control schemes. In the literature, these control problems have been addressed by different approaches (see for instance [29, 30, 31, 32, 33, 34, 35, 36, 37, 38] and the references there in). All these works deal with DC-DC buck converters or do not take into account the model of the power converter. However, in many battery-powered applications such as hybrid electric vehicles and lighting systems, DC-DC boost converters can be used in order to achieve higher voltage and reduce the number of cells1 [39, 40, 41]. Since the dynamics of the boost converter are nonlinear, regulating the output voltage in presence of unknown load demand and uncertain network parameters is not an easy task. For all these reasons, the solution in this paper relies on the Sliding Mode (SM) control methodology to solve the voltage control problem in boost-based DC microgrids affected by nonlinearities and uncertainties [42, 43, 44]. Indeed, sliding modes are well known for their robustness properties and, belonging to the class of Variable Structure Control Systems, have been extensively applied in power electronics, since they are perfectly adequate to control the inherently variable structure nature of DC-DC converters [45, 46, 47, 48, 49, 50]. SM controllers require to operate at very high (ideally infinite) and variable switching frequency. This condition increases the power losses and the issues related to the electromagnetic interference noise, making the design of the input and output filters more complicated [51]. SM controllers based on the hysteresis-modulation (also known as delta-modulation) have been proposed in order to restrict the switching frequency (see for instance [52]). To do this, additional tools such as constant timer circuits or adaptive hysteresis band are required, making the solution more elaborated and then unattractive. Moreover, this approach (called quasi-SM) reduces the robustness of the control system [53]. Alternatively, the so-called equivalent control approach and the application of state space averaging method to SM control have been proposed together with the Pulse Width Modulation (PWM) technique (otherwise known as duty cycle control) to achieve constant switching frequency [54]. However, computing the equivalent control often requires the perfect knowledge of the model parameters as well as the load and the input voltage [55], or the implementation of observers to estimate them [56]. Alternatively, in [57] a total SM controller has been proposed relying on the nominal model of a single boost converter and exploiting a discontinuous control law to reject the model uncertainties.

In this paper, in order to control the output voltage of boost converters in DC microgrids, a fully decentralized Second Order SM (SOSM) control solution is proposed, capable of dealing with unknown load and input voltage dynamics, as well as uncertain model parameters, without requiring the use of observers. Due to its decentralized and robust nature, the design of each low-level local controller does not depend on the knowledge of the whole microgrid, making the control synthesis simple, the control scheme scalable and suitable for be coupled with higher-level control schemes aimed at generating voltage references that guarantee load sharing. Since a higher order sliding modes methodology is used, the proposed controllers generate continuous inputs that can be used as duty cycles, in order to achieve constant switching frequency. Besides, being of higher order, a distinguishing feature of the proposed control scheme is that an additional auxiliary integral controller is coupled to the controlled converter, via suitable designed sliding function. Moreover, with respect to the existing literature (to the best of our knowledge) in this paper the local stability of a boost-based microgrid is analyzed, instead of the single boost converter, theoretically proving that on the obtained sliding manifold, the desired operating point is robustly locally exponentially stable. Additionally, the analysis is useful to choose suitable controller parameters ensuring the stability, and facilitates the tuning of the controllers. The proposed control scheme has been validated through experimental tests on a real DC microgrid test facility at Ricerca sul Sistema Energetico (RSE), in Milan, Italy [58], showing satisfactory closed-loop performances.

The present paper is organized as follows: Section 2 introduces the main concepts and the description of the considered system. In Section 3 the microgrid model is presented and the control problem is formulated, while in Section 4 the proposed SOSM is designed. In Section 5 the stability properties of the controlled system are theoretically analyzed, while in Section 6 the experimental results on a real DC microgrid are illustrated and discussed. Some conclusions are finally gathered in Section 7.

2. DC Microgrid Model

Before introducing the model of the considered boost-based DC microgrid, for the readers’ convenience, some basic notions on DC microgrids are presented.

Fig. 1 shows the electrical scheme of a typical boost-based DC microgrid, where two DGUs, with local loads, exchange power through the distribution line represented by the resistance R_{ij}. The energy source of a DGU, which can be of renewable type, is represented, for simplicity, by a DC voltage source V_{DC}. The boost converter feeds a local DC load with a voltage level V higher than V_{DC}. Note that, the boost converter allows to

1Battery-powered applications often stack cells in series to increase the voltage level.
obtain an output voltage level higher than or equal to the voltage input. This is done due to the quick succession of two different operation stages during which the inductance \(L_1 \) accumulates or supplies energy. The resistance \(R_i \), instead, represents all the unavoidable energy losses. Finally the capacitor \(C_i \) is used in order to maintain a constant voltage at the output of the power converter. The local DC load is connected to the so-called Point of Common Coupling (PCC) and it can be treated as a current disturbance \(I_{PCC} \).

The network is represented by a connected and undirected graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \), where the nodes \(\mathcal{V} = \{1, \ldots, n\} \), represent the DGUs and the edges \(\mathcal{E} = \{1, \ldots, m\} \), represent the distribution lines interconnecting the DGUs. First, consider the scheme reported in Fig. 1. By applying the Kirchhoff’s current (KCL) and voltage (KVL) laws, and by using an average switching method, the governing dynamic equations\(^3\) of the \(i \)-th node are the following

\[
\begin{align*}
L_i & \frac{\text{d}I_i}{\text{d}t} = -R_i I_i - u_i V_i + V_{DC}, \\
C_i & \frac{\text{d}V_i}{\text{d}t} = u_i I_i - L_i \sum_{j \in \mathcal{N}_i} I_{ij},
\end{align*}
\]

(1)

where \(\mathcal{N}_i \) is the set of nodes (i.e., DGUs) connected to the \(i \)-th DGU by distribution lines, while \(u_i \) is the control input and \(d_i \) is the duty cycle (0 ≤ \(d_i \) ≤ 1). Exploiting the Quasi Stationary Line (QSL) approximation of power lines [59, 60], for each \(j \in \mathcal{N}_i \), one has

\[
I_{ij} = \frac{1}{R_{ij}} (V_i - V_j).
\]

(2)

The symbols used in (1) and (2) are described in Table 1.

Remark 1. (Kron reduction) Note that in (1), the load currents are located only at the PCC of each DGU (see also Fig. 1). However, in many cases the loads are not close to the DGUs. Then, by using the well known Kron reduction method, it is possible to map arbitrary interconnections of DGUs (boundary nodes) and loads (interior nodes), into a reduced network with only local loads [31, 61].

\[^3\text{For the sake of simplicity, the dependence of all the variables on time } t \text{ is omitted throughout the paper.}\]

![Figure 1. The considered electrical scheme of a typical boost-based DC microgrid composed of two DGUs.](image)

<table>
<thead>
<tr>
<th>Table 1. Description of the used symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>State variables</td>
</tr>
<tr>
<td>(I_i) Inductor current</td>
</tr>
<tr>
<td>(V_i) Boost output voltage</td>
</tr>
<tr>
<td>(I_{ij}) Exchanged current</td>
</tr>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>(R_i) Filter resistance</td>
</tr>
<tr>
<td>(L_i) Filter inductance</td>
</tr>
<tr>
<td>(C_i) Shunt capacitor</td>
</tr>
<tr>
<td>(R_{ij}) Line resistance</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>(u_i) Control input</td>
</tr>
<tr>
<td>(V_{DCi}) Voltage source</td>
</tr>
<tr>
<td>(I_{PCC}) Unknown current demand</td>
</tr>
</tbody>
</table>

The network topology can be represented by its corresponding incidence matrix \(\mathbf{B} \in \mathbb{R}^{n \times m} \). The ends of edge \(k \) are arbitrarily labeled with \(+ \) and \(- \). More precisely, one has that

\[
b_{ik} = \begin{cases}
+1 & \text{if } i \text{ is the positive end of } k \\
-1 & \text{if } i \text{ is the negative end of } k \\
0 & \text{otherwise.}
\end{cases}
\]

Let ‘\(\circ \)’ denote the so-called Hadamard product (also known as Schur product). Given the vectors \(\mathbf{p} \in \mathbb{R}^n, \mathbf{q} \in \mathbb{R}^n \), then \((\mathbf{p} \circ \mathbf{q}) \in \mathbb{R}^n \) with \(p_i q_i = p_i q_i \), for all \(i \in \mathcal{V} \). After substituting (2) in (1), the overall microgrid system can be written compactly for all nodes \(i \in \mathcal{V} \) as

\[
\begin{align*}
\mathbf{L}_i \dot{\mathbf{I}}_i &= -\mathbf{R}_i \mathbf{I}_i - \mathbf{u} \circ \mathbf{v} + \mathbf{v}_{DC} \\
\mathbf{C}_i \dot{\mathbf{V}}_i &= \mathbf{u} \circ \mathbf{t}_i - \mathbf{BR}_i^{-1} \mathbf{B}^T \mathbf{v} - \mathbf{t}_i,
\end{align*}
\]

(3)

where \(\mathbf{u}_i = [I_{i1}, \ldots, I_{in}]^T, \mathbf{v} = [V_1, \ldots, V_n]^T, \mathbf{v}_{DC} = [V_{DC1}, \ldots, V_{DCn}]^T, \mathbf{n}_i = [I_{i1}, \ldots, I_{in}]^T \), and \(\mathbf{u} = [u_1, \ldots, u_n]^T \). Moreover \(\mathbf{C}_i, \mathbf{L}_i \) and \(\mathbf{R}_i \) are \(n \times n \) positive definite diagonal matrices, while \(\mathbf{R} \) is a \(m \times m \) positive definite diagonal matrix, e.g. \(\mathbf{R}_i = \text{diag}[R_{i1}, \ldots, R_{in}] \) and \(\mathbf{R} = \text{diag}[R_1, \ldots, R_n] \), with \(R_k = R_{ij} \) for all \(k \in \mathcal{E} \), where line \(k \) connects nodes \(i \) and \(j \).
3. Problem Formulation

Before introducing the control problem and in order to permit the controller design in the next sections, the following assumption is introduced:

Assumption 1. (Available information) The state variables \(i_i\) and \(v_i\) are locally available only at the \(i\)-th DGU. The network parameters \(R_i, L_i, C_i\), the current disturbance \(I_{L_i}\), and the voltage source \(V_{DC}\) are constant, unknown but bounded, with bounds a-priori known.

Remark 2. (Decentralized control) Since, according to Assumption 1, the values of \(I_i\) and \(V_i\) are available only at the \(i\)-th DGU, the control scheme to regulate the voltages needs to be fully decentralized.

Remark 3. (Varying uncertainty) Note that the parameter uncertainty, the current disturbance and the voltage source are required to be constant (Assumption 1) only to allow for a steady state solution and to theoretically analyze its stability. In fact, since a robust control strategy is adopted, Assumption 1 is not needed to reach and remain on the desired sliding manifold that is designed in Section 4.

Note that given a constant current disturbance \(I_i\), and a constant voltage source \(V_{DC}\), there exist a constant control input \(\bar{u}\) and a steady state solution \((\bar{i}, \bar{v})\) to system (3) that satisfy

\[
\begin{align*}
\bar{i}_i &= R_i^{-1}(-\bar{u} \circ \bar{v} + V_{DC}) \\
BR^{-1}B' \bar{v} &= \bar{u} \circ \bar{i} - I_i.
\end{align*}
\]

The second line of (4) implies

\[
\text{that at the steady state the total generated current } I_i (\bar{u} \circ \bar{i}) \text{ is equal to the total current demand } I_i (\bar{i}). \text{ To formulate the control objective, aiming at voltage regulation, it is assumed that for every DGU, there exists a desired reference voltage } V^* \text{.}
\]

Assumption 2. (Desired voltage) There exists a constant reference voltage \(V^*_i\) at the PCC, for all \(i \in V\).

The objective is then formulated as follows: Given system (3), and given a \(v^* = [V^*_1, \ldots, V^*_n]')\), we aim at designing a fully decentralized control scheme capable of guaranteeing voltage regulation, i.e.

Objective 1. (Voltage regulation)

\[
\lim_{t \to \infty} v(t) = \bar{v} = v^*.
\]

4. The Proposed Solution

In this section a fully decentralized Suboptimal Second Order Sliding Mode (SSOSM) low-level control scheme is proposed in order to achieve Objective 1, providing a continuous control input. As a first step, system (3) is augmented with additional state variables \(\theta_i\) for all \(i \in V\), resulting in:

\[
\begin{align*}
L_i \dot{i}_i &= -R_i i_i - u \circ v + v_{DC} \\
C_i \ddot{v} &= u \circ i_i - BR^{-1}B' v - I_i \\
\dot{\theta} &= -(v - v^*).
\end{align*}
\]

The additional state \(\theta\) will be coupled to the control input \(u\) via the proposed control scheme, and its dynamics provide a form of integral action that is helpful to obtain the desired voltage regulation.

Now, to facilitate the discussion, some definitions are recalled that are essential to sliding mode control. To this end, consider system

\[
x = \xi(x, u),
\]

with \(x \in \mathbb{R}^n, u \in \mathbb{R}^m\).

Definition 1. (Sliding function) The sliding function \(\sigma(x) : \mathbb{R}^n \rightarrow \mathbb{R}^m\) is a sufficiently smooth output function of system (7).

Definition 2. (Sliding manifold) The \(r\)-sliding manifold is given by

\[
\{x \in \mathbb{R}^n, u \in \mathbb{R}^m : \sigma = L_\xi \sigma = \cdots = L^{(r-1)}_\xi \sigma = 0\},
\]

where \(L^{(r-1)}_\xi \sigma(x)\) is the \((r-1)\)-th order Lie derivative of \(\sigma(x)\) along the vector field \(\xi(x, u)\). With a slight abuse of notation, also \(L_\xi \sigma(x) = \dot{\sigma}(x)\), and \(L^{(r)}_\xi \sigma(x) = \ddot{\sigma}(x)\) are used in the remainder.

Definition 3. (Sliding mode order) A \(r\)-order sliding mode is enforced from \(t = T_i \ge 0\), when, starting from an initial condition, the state of (7) reaches the \(r\)-sliding manifold, and remains there for all \(t \ge T_i\). The order of a sliding mode controller is identical to the order of the sliding manifold that it is aimed at enforcing.

Now, a suitable sliding function \(\sigma(i_t, v, \theta)\) for system (6) will be introduced, that permits to prove the achievement of Objective 1. The choice is indeed motivated by the stability analysis in the next section, but it is stated here for the sake of exposition. First, the sliding function \(\sigma : \mathbb{R}^{3n} \rightarrow \mathbb{R}^n\) is given by

\[
\sigma(i_t, v, \theta) = M_1 i_t + M_2 (v - v^*) - M_3 \theta,
\]

where \(M_1 = \text{diag}(m_{11}, \ldots, m_{1n}), M_2 = \text{diag}(m_{21}, \ldots, m_{2n}), M_3 = \text{diag}(m_{31}, \ldots, m_{3n})\) are positive definite diagonal matrices suitable selected in order to assign the dynamics of system (3) when it is constrained on the manifold \(\sigma = 0\). Since \(M_1, M_2, M_3\) are diagonal matrices, \(m_{ij}, i \in V\), depends, according to Assumption 1, only on the state variables locally available at the \(i\)-th node, facilitating the design of a decentralized control scheme (see Remark 2).

\[\text{For the sake of simplicity, the order } r \text{ of the sliding manifold is omitted in the remainder of this paper.}\]
By regarding the sliding function (9) as the output function of system (3), it appears that the relative degree5 of the system is one. This implies that a first order sliding mode controller can be naturally applied in order to attain in a finite time the sliding manifold \(\sigma = 0 \) [42]. In this case, the discontinuous control signal generated by a first order sliding mode controller can be directly used to open and close the switch of the boost converter.

Remark 4. (Duty cycle) By using a (discontinuous) first order sliding mode control law to open and close the switch of the boost converter, the Insulated Gate Bipolar Transistors (IGBTs) switching frequency cannot be-a-priori fixed and the corresponding power losses could be very high. To overcome this issue, different techniques have been proposed in the literature (see for instance [62, 63, 64] and the references therein). In [62], fixed switching frequency is achieved by constraining the state of the controlled system in a neighbour of the sliding manifold (boundary layer approach), losing the robustness property typical of SM control. In order to ensure a constant switching frequency, an adaptive hysteresis SM control and a load observer have been proposed in [63, 64], leading to more complicated controller implementations. However, in order to achieve a constant IGBTs switching frequency, boost converters are usually controlled by implementing the so-called Pulse Width Modulation (PWM) technique. To do this, a continuous control signal that represents the so-called duty cycle of the boost converter is required.

Since sliding mode controllers generate a discontinuous control signal, in order to obtain a continuous control signal, the procedure suggested in [65] is adopted by integrating the discontinuous signal, yielding for system (6)

\[
\begin{align*}
\dot{L}_h &= -R_{L_h} v - u \circ v + v_{DC} \\
\dot{C}_h v &= u \circ v - BR^{-1} B^T v - n_L \\
\dot{\theta} &= -(v^*-v) \\
\dot{u} &= h,
\end{align*}
\]

where \(h \in \mathbb{R}^n \) is the new (discontinuous) sliding mode control input. From (10) one can observe that the system relative degree (with respect to the new control input \(h \)) is now two. Then, it is possible to rely on second order sliding mode control strategy in order to steer the state of system (10) to the sliding manifold \(\sigma = \dot{\sigma} = 0 \) for all \(t \geq T \). To make the controller design explicit, a specific second order sliding mode controller is discussed, namely, the well known ‘Suboptimal Second Order Sliding Mode’ (SSOSM) controller proposed in [65].

Define \(d_t \) equal to \(\sum_{i \in \mathcal{N}} I_{ij} \), with \(I_{ij} \) given by (2). For each node two auxiliary variables are defined, \(\xi_1 = \sigma_t \) and \(\xi_2 = \dot{\sigma}_t, i \in \mathcal{V} \), and the so-called auxiliary system is build as follows:

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \phi(\xi_1, \dot{\xi}_1, u_t) - \gamma(\xi_1, \dot{\xi}_1) h_t \\
u_t &= h_t,
\end{align*}
\]

where \(\xi_2 \) is not measurable. Indeed, according to Assumption 1, \(I_t \) is unknown and the parameters of the model are uncertain. Bearing in mind that \(\dot{\xi}_2 = \dot{\sigma}_t = \phi_i + \gamma_i h_t \), the expressions for \(\phi_i \) and \(\gamma_i \) are straightforwardly obtained from (9) by taking the second derivative of \(\sigma_t \) with respect to time, yielding

\[
\begin{align*}
\phi_i(t) &= -m_1 L_i^{-1} R_{L_i} V_i + m_3 V_i - m_1 L_i^{-1} V_i u_t + m_2 C_i^{-1} I_{ij} u_t - m_2 C_i^{-1} d_t \\
\gamma_i(t) &= m_1 L_i^{-1} V_i - m_2 C_i^{-1} h_t.
\end{align*}
\]

The following assumption is made on the uncertainties \(\phi_i \) and \(\gamma_i, i \in \mathcal{V} \).

Assumption 3. (Bounded uncertainty) Functions \(\phi_i \) and \(\gamma_i \) in (11) have known bounds, i.e.,

\[
\begin{align*}
|\phi_i(t)| &\leq \Phi_i, & \forall i \in \mathcal{V}, \\
0 &< \Gamma_{\min} \leq \gamma_i(t) \leq \Gamma_{\max}, & \forall i \in \mathcal{V},
\end{align*}
\]

\(\Phi_i, \Gamma_{\min}, \) and \(\Gamma_{\max} \), being positive constants.

Remark 5. (Adaptive SSOSM) Note that in practical cases the bounds in (13) and (14) can be determined relying on data analysis and physical insights. However, if these bounds cannot be a-priori estimated, the adaptive version of the SSOSM algorithm proposed in [66] can be used to dominate the effect of the uncertainties.

With reference to [65], for each DG unit \(i \in \mathcal{V} \), the control law that is proposed to steer \(\xi_1 \) and \(\xi_2 \), to zero in a finite time can be expressed as

\[
\begin{align*}
h_t &= \alpha_i \max\left(0, 1 - \frac{\Gamma_{\min} - \alpha_i \Gamma_{\max}}{\Phi_i}
ight) \\
\end{align*}
\]

with

\[
\begin{align*}
\max\left(0, \frac{\Phi_i}{\alpha_i \Gamma_{\min}} \right) \leq H_{\max} < \max\left(0, \frac{\Phi_i}{\alpha_i \Gamma_{\max}} \right),
\end{align*}
\]

\(\alpha_i \) switching between \(\alpha_i \) and 1, according to [65, Algorithm 1]. Note that the control input \(u_t(t) = \int_{0}^{t} h_t(\tau) d\tau \), is continuous, since \(w_t \) is piecewise constant. Then, \(d_t = 1 - u_t \) can be used as duty cycle of the \(i \)-th boost converter. The extremal values \(\xi_{1,\text{max}} \) in (15) can be detected by implementing for instance a peak detector as in [67]. Note also that the design of the local controller for each DG unit is not based on the knowledge of the whole microgrid, making the control synthesis simpler and the proposed control scheme scalable.

Remark 6. (Alternative SOSM controllers) In this work the control scheme relies on the SSOSM control law proposed in [65]. However, to constrain system (10) on the sliding manifold \(\sigma = \dot{\sigma} = 0 \), any other SOSM control law that does not need the measurement of \(\dot{\sigma} \) can be used (e.g. the super-twisting control algorithm [68]).
5. Stability Analysis And Tuning Guidelines

In this section the (local) stability of the desired steady state \((t_0, v^*, \bar{\theta})\) is studied, satisfying under an appropriate control input \(u\) the steady state equations

\[
\begin{align*}
0 &= -R\bar{i}_t - \bar{u} \circ v^* + vDC \\
0 &= \bar{u} \circ \bar{i}_t - BR^{-1}B^Tv^* - t_L \\
0 &= -(v^* - v^*).
\end{align*}
\] (18)

As will be shown, the stability analysis provides guidelines on the proper selection of the parameters appearing in the designed sliding function (9). First, one notices that the proposed SSOSM control scheme ensures that, after a finite time, the system (6) is constrained to the manifold characterized by \(\sigma = \sigma = 0\). This is made explicit in the following lemma:

Lemma 1. (Convergence to the sliding manifold) Let Assumptions 1-3 hold. The solutions to system (6), controlled via the SSOSM control law (11)-(17), converge in a finite time \(T_\tau\), to the sliding manifold \((t_1, v, \theta) : \sigma = \sigma = 0\), with \(\sigma\) given by (9).

Proof. Following [65], the application of (11)-(17) to each converter guarantees that \(\sigma = \sigma = 0\), for all \(t \geq T_\tau\). The details are omitted, since they are an immediate consequence of the used SSOSM control algorithm [65].

To continue the stability analysis, the so-called equivalent control is introduced, that permits to characterize the input \(u\) to the system once the sliding manifold is attained.

Definition 4. (Equivalent control) Consider system (7) and the sliding function \(\sigma\). Assume that a \(r\)-order sliding mode exists on the manifold (8). Assume also that a solution to system \(\sigma^{(r)} = L^{(r)}\sigma = 0\), with respect to the control input \(u\), exists. This solution is called equivalent control and is denoted by \(u_{eq}\) [42].

Particularly, the dynamics of (7) are described on the sliding manifold by the so-called equivalent system that is obtained by substituting \(u_{eq}\) for \(u\). For the system at hand, the corresponding equivalent control is given by

\[
\begin{align*}
u_{eq} &= \left(M_1L_1^{-1}\text{diag}(v) - M_2C_t^{-1}\text{diag}(t_1)^{-1}
ight)
\cdot (-M_1L_1^{-1}R\bar{i}_t - M_2C_t^{-1}BR^{-1}B^Tv)
\cdot \left(M_1L_1^{-1}vDC - M_2C_t^{-1}t_L + M_3(v-v^*)\right).
\end{align*}
\] (19)

The (global) stability study of the resulting nonlinear equivalent system is postponed to a future research. Instead, the focus here is on a local stability result, providing guidelines to the design of the control parameters. Therefore, system (6) is linearized around the point \((\bar{t}_0, v^*, \bar{\theta})\), resulting in the linearized system

\[
\begin{align*}
L_1\hat{t}_1 &= -R(\bar{t}_1 - t_0) - \bar{u} \circ (v - v^*) - v^* \circ (u - \bar{u}) \\
C_1\hat{v} &= \bar{u} \circ (\bar{t}_1 - t_0) + \bar{t}_1 \circ (u - \bar{u}) - BR^{-1}B^T(v - v^*) \\
\hat{\theta} &= -(v - v^*).
\end{align*}
\] (20)

Next, it is investigated how the linearized system behaves on the sliding manifold under the proposed sliding mode control scheme. The obtained equivalent system for (20) is determined explicitly in the following lemma:

Lemma 2. (Equivalent system) For all \(t \geq T_\tau\), the linearized dynamics of the controlled microgrid are given by the equivalent version of system (20) and are as follows:

\[
\begin{align*}
\dot{\tilde{v}} &= F \tilde{v} + G \tilde{\theta}, \\
\dot{\tilde{\theta}} &= \tilde{\theta} - \bar{\theta},
\end{align*}
\] (21)

where \(\tilde{v} = v - v^*, \tilde{\theta} = \theta - \bar{\theta}, \) and \(I\) is the identity matrix. Furthermore, the matrices \(F\) and \(G\) are given by

\[
\begin{align*}
F &= -M_1^{-1}M_2\text{diag}(\bar{u}) - BR^{-1}B^T \\
&+ WM_1L_1^{-1}\text{diag}(\bar{t}_1)\left(M_1^{-1}M_2R - \text{diag}(\bar{u})\right) \\
&- WM_2C_t^{-1}\text{diag}(\bar{t}_1)(\text{diag}(\bar{u})M_1^{-1}M_2 + BR^{-1}B^T) \\
&+ WM_1d\bar{t}_1,
\end{align*}
\] (22)

and

\[
\begin{align*}
G &= M_3M_1^{-1}\text{diag}(\bar{u}) - M_3WL_1^{-1}R\text{diag}(\bar{t}_1) \\
&+ M_3WM_2M_1^{-1}C_t^{-1}\text{diag}(\bar{t}_1)\text{diag}(\bar{u}),
\end{align*}
\] (23)

where

\[
W = (L_1^{-1}M_1\text{diag}(v^*) - C_t^{-1}M_2\text{diag}(\bar{t}_1))^{-1}.
\] (24)

Proof. The relation \(\sigma = 0\) is equivalent to

\[
M_1\dot{t}_1 + M_2\dot{v} - M_3\dot{\theta} = 0.
\] (25)

Bearing in mind the dynamics (20), equation (25) can be solved for \(u\), where it is additionally exploited that on the manifold \(\sigma = \sigma = 0\) one has \(M_1\dot{t}_1 = M_3\dot{\theta} - M_3\dot{v}\) and that at the point \((\tilde{t}_1, v^*, \bar{\theta})\) it holds that \(M_1\tilde{t}_1 = M_3\bar{\theta}\). This yields the following equivalent control \(u_{eq}\):

\[
\begin{align*}
u_{eq} &= \bar{u} + W(M_1L_1^{-1}(-R\bar{t}_1 - \bar{u} \circ \bar{v}) \\
&+ M_1L_1^{-1}vDC - M_2C_t^{-1}t_L + M_3(v-v^*)),
\end{align*}
\] (26)

where \(\bar{t}_1 = t_1 - t_0\) and \(W\) is given by (24). Substituting \(u_{eq}\) for \(u\) in (20), and using again the relations \(M_1\dot{t}_1 = M_3\dot{\theta} - M_3\dot{v}\) and \(M_1\tilde{t}_1 = M_3\bar{\theta}\), it can be readily confirmed that the last two equations of (20) reduce to (21).

As a consequence of the previous lemma, in order to prove that system (20) is exponentially stable on the attained sliding manifold, matrix \(A\) in (21) needs to be Hurwitz. However, explicitly characterizing all the eigenvalues of \(A\) is difficult, mainly due to the coupling term \(BR^{-1}B^T\). Generally, the eigenvalues depend indeed on the particular microgrid, its parameters and its operation point. However, in the remainder of this section, it is shown that, by LaSalle’s invariance principle, the desired operating point of the controlled microgrid can always be made locally exponentially stable by choosing appropriate values for \(M_1, M_2\) and \(M_3\) in the controller. Bearing in mind that system (21) is linear, the (local) exponential stability of (21) is indeed identical to matrix \(A\) being Hurwitz. Before continuing the stability analysis of (21), it is noted that in any practical case, the filter resistance is negligible, i.e. \(R_L \approx 0\). This leads to the following result on \(G\) given by (23).
Lemma 3. (Positive definiteness of (23)) Let Assumption 3 hold. The matrix G in (23) is positive definite.

Proof. The matrix M_3 in (9) is positive definite, and as a consequence of Assumption 3 also the matrix $W = \text{diag}(w_1, \ldots, w_n)$ is positive definite, since w_i is the steady state value of $\gamma_i(\cdot) > 0$. From (23), we have

$$(M_3WL_4^{-1})^{-1}G = \text{diag}(\overline{u})\text{diag}(\overline{v}^*) - R_0\text{diag}(t_0).$$

(27)

Since $R_0 \approx 0$ and the entries of \overline{u} and \overline{v}^* are positive, it follows that $G > 0$.

Exploiting Lemma 3 above, it is possible to suggest a suitable Lyapunov function to study the stability of system (21), or equivalently, the stability of (20) on the sliding manifold.

Proposition 1. (Sufficient condition for local exponential stability). Let Assumptions 1-3 hold. The desired operating point $(\bar{v}, \bar{\theta})$, satisfying (18) can be made locally exponentially stable on the sliding manifold characterized by $\sigma = \dot{\sigma} = 0$, by choosing the entries of M_2 sufficiently large.

Proof. Consider the Lyapunov function

$$S(\bar{v}, \bar{\theta}) = \bar{v}^T \bar{v} + \bar{\theta}^T G \bar{\theta},$$

(28)

where $G > 0$ follows from Lemma 3. A straightforward calculation shows that $S(\bar{v}, \bar{\theta})$ satisfies along the solutions to (21)

$$\dot{S}(\bar{v}, \bar{\theta}) = \bar{v}^T (F + F^T) \bar{v} \leq 0.$$

(29)

From (22) we have

$$W^{-1}F = -M_2L_4^{-1}\left(\text{diag}(\overline{u})\text{diag}(\overline{v}^*) - R_0\text{diag}(t_0)\right) - M_1L_4^{-1}\text{diag}(\overline{u})\text{diag}(t_0) + M_3\text{diag}(t_0) - M_3BR^T B^T L_4^{-1}\text{diag}(\overline{v}^*).$$

(30)

Since $R_0 \approx 0$, then by choosing the entries of M_2 sufficiently large, the diagonal of F can be made sufficiently negative such that $F + F^T < 0$. By LaSalle’s invariance principle, the solutions to (21) converge to the largest invariant set where $\bar{v} = 0$. Moreover, on this invariant set it holds, due to the invertibility of G, that $\bar{\theta} = 0$. Therefore, the solutions to (21) converge to the origin. This in turn implies that all the eigenvalues of A are negative, and consequently (21) is exponentially stable. Furthermore, since on the sliding manifold one has that $\sigma = 0$, the local exponential stability of \bar{v} and $\bar{\theta}$, implies that t_0 converges exponentially to $M_1^{-1}M_2\bar{\theta}$.

Remark 7. (Tuning rules) First, we notice that for any $i \in \mathcal{V}$, the requirement of $\gamma_i(\cdot) > 0$ in Assumption 3 provides the following tuning rule

$$m_1 > \frac{L_1}{C_0 V_i} m_2 \quad \text{if } \bar{I}_0 > 0.$$

(31)

If instead $\bar{I}_0 \leq 0$, then $\gamma_i(\cdot)$ is positive for any m_1, m_2. Secondly, one can notice that under the assumption of constant current exchanged with the neighboring nodes, F becomes a diagonal matrix. Then, a tedious, but straightforward, calculation provides explicit bounds on the permitted values of M_1, M_2 and M_3 such that the dynamics matrix

$$A_i = \begin{bmatrix} F_i & G_i \\ -1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

(32)

of the i-th boost converter is Hurwitz for any $i \in \mathcal{V}$, i.e.,

$$m_1 > \frac{L_1}{u_i} m_3 + \frac{R_0}{u_i} m_2 - \frac{V_i^*}{\bar{I}_i} m_2, \quad \text{if } \bar{I}_i > 0$$

(33)

$$m_1 < \frac{L_1}{u_i} m_3 + \frac{R_0}{u_i} m_2 - \frac{V_i^*}{\bar{I}_i} m_2, \quad \text{if } \bar{I}_i \leq 0.$$

Finally, combining (31) and (33), we have that

$$\mu < m_1 < \overline{m}_i,$$

(34)

with

$$\mu = \max \left(\frac{L_1}{u_i} m_3 + \frac{R_0}{u_i} m_2 - \frac{V_i^*}{\bar{I}_i} m_2; \frac{L_1}{C_0 V_i^*} m_2 \right)$$

$$\overline{m}_i = \frac{L_1}{u_i} m_3 + \frac{R_0}{u_i} m_2 + \frac{V_i^*}{\bar{I}_i} m_2.$$

(35)

6. Experimental Results

In order to verify the proposed control strategy, experimental tests have been carried out using the DC microgrid test facility at RSE, shown in Figs. 2-4. The controller parameters suggested by the stability results in the previous section were very useful for conducting the experiments. The RSE’s DC grid is unipolar with a nominal voltage of 380 V and, during the test, includes one resistive load, with a maximum power of 30 kW at 400 V, one DC generator with a maximum power of 30 kW, that can be used as a PV emulator, and two Energy Storage Systems, based on high temperature NaNiCl batteries, each of them with an energy of 18 kWh and a maximum power of 30 kW for 10 s. These components are connected to a common DC link through four 35 kW DC-DC boost synchronous converters. The DC-DC converters are distributed and connected to the DC link with power distribution lines characterized by different parameters, as reported in Table 2.

The control of each converter is realized through two dSpace controllers that measure the inductor current and the boost output voltage and drive the power electronic converters. The DC-DC converters of the load and of the generator have input voltages equal to 266 V and 320 V, respectively. They are controlled in constant power mode and are treated, during the test, as current disturbances (see Fig. 2). The bidirectional converters of the batteries are controlled through the SSOSM control strategy described in Section 4, in order to regulate the voltage at Node 2 and Node 4 (see Fig. 2). The voltage reference V^*
V_{DC}_2 \quad C_{_2} \quad \text{Boost} \quad \text{Battery 2} \\
R_{12} \quad L_{12} \quad \text{Load} \\
Node 2 \\

V_{DC}_1 \quad R_{13} \quad L_{13} \quad \text{PV} \\
Node 1 \\

R_{34} \quad L_{34} \quad C_{_1} \quad \text{Boost} \quad \text{Battery 1} \\
Node 3 \\

L_{t1} \quad L_{t2} \\

for these nodes is set equal to 380 V, while the input voltages V_{DC1} and V_{DC2} are both equal to 278 V. According to the stability results in Section 5, the SSOSM control parameters for the battery converters are reported in Table 3. In order to investigate the performance of the proposed control approach within a low voltage DC microgrid, four different scenarios are implemented. Note that in the following figures it is arbitrarily assumed that the current entering any node is positive (passive sign convention).

Scenario 1. Disturbance with a limited ramp rate power variation: In the first scenario it is assumed that the system is in a steady state condition with zero power absorbed by the load or provided by the generator. Each battery converter regulates its output voltage at the desired value equal to 380 V and there is no exchange of power between these two components. At the time instant $t = 5$ s the power reference for the load converter (see Fig. 5) or for the generator converter (see Fig. 6) is set to 20 kW and at the time instant $t = 35$ s, is reset to 0 kW with the ramp rate limited to 1 kW/s. As shown in the pictures, when the disturbance has a limited ramp rate, the proposed control strategy is able to keep the output voltage of both the batteries DC-DC converter to their reference without any voltage variation. When the system reaches the steady state condition, the two battery converters exchange power with the DC network in order to maintain the voltages equal to the desired values. In this situation there is not an optimal current sharing between the two battery converters because the load and the generator are not connected to the same node of the grid and different line impedances connect the components.

Scenario 2. Disturbance with a step power variation: In
Scenario 3. Step variation of the voltage reference: In this third scenario it is assumed that the system is in a steady state condition with a constant power equal to 20 kW absorbed by the load or provided by the generator. Each battery converter regulates its output voltage at a fixed value equal to 380 V, and the power exchanged by the two batteries is different due to the different line impedances. At the time instant \(t = 5 \) s the DC voltage reference for one of the two battery converters is modified. Fig. 9 shows the system performances when the constant load is set to 20 kW and the reference voltage of the first battery converter is increased by 5 V, while Fig. 10 shows the opposite situation with the constant generation set to 20 kW and the reference voltage of the second battery converter decreased by 5 V. In these situations it is possible to observe that the DC voltage variation in one battery converter has no significant effect on the voltage at the other battery converter. The system exhibits a stable performance thanks to the robustness of the proposed decentralized SSOSM control approach. By modifying the voltage reference of the two battery converters it is possible to obtain a different current sharing among the batteries of the microgrid. As illustrated in the next scenario, it is indeed possible to cover the control objective related to optimal current sharing.

Scenario 4. Current sharing: In this scenario the proposed voltage controllers have been coupled with a higher-level con-
Figure 9. Scenario 3: system performance with a step DC voltage reference variation of battery converter number 1.

Figure 10. Scenario 3: system performance with a step DC voltage reference variation of battery converter number 2.

Figure 11. Scenario 4: system performance in case of constant load (20 kW) and voltage reference variation for the DC-DC battery converters in order to obtain optimal current sharing.

7. Conclusions

In this paper a robust control strategy has been designed to regulate the voltage in boost-based DC microgrids. The proposed control scheme is fully decentralized and is based on higher order sliding mode control methodology, which allows to obtain continuous control inputs. The latter can be used as duty cycles of the boost converters, achieving constant switching frequency and facilitating a PWM-based implementation. The stability of a boost-based microgrid has been theoretically analyzed proving that, on the proposed sliding manifold, the desired operating point is locally exponentially stable. The proposed control scheme has been validated through experimental tests on a real DC microgrid, showing satisfactory closed-loop performances. Interesting future research includes the stability analysis of the obtained nonlinear equivalent system, as well as studying the performance of the proposed control scheme in more heterogeneous networks, possibly including different converter types and the presence of local control strategies that differ from the one proposed here.

References

