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Abstract— This paper deals with the design of a robust
and decentralized passivity-based control scheme for regulating
the voltage of a DC microgrid through boost converters. A
Krasovskii-type storage function is proposed and a (local)
passivity property for DC microgrids comprising unknown ZIP
(constant impedance ‘Z’, constant current ‘I’ and constant
power ‘P’) loads is established. More precisely, the input port-
variable of the corresponding passive map is equal to the
first-time derivative of the control input. Then, the integrated
input port-variable is used to shape the closed loop storage
function such that it has a minimum at the desired equilibrium
point. Convergence to the desired equilibrium is theoretically
analyzed and the proposed control scheme is validated through
experiments on a real DC microgrid.

I. INTRODUCTION
Distributed Generation (DG) requires fundamental trans-

formations of the conventional power generation, transmis-
sion and distribution systems [1]. DG represents a conceptual
solution to i) enhance the integration of Renewable Energy
Sources (RES) in order to reduce CO2 emissions and the
dependency on fossil fuels, ii) increase the energy efficiency
by reducing the transmission power losses, iii) improve the
service quality by enabling the operation of portions of the
network disconnected from the main grid and iv) minimize
the costs for electrifying remote areas or re-powering the
existing power networks due to the ever increasing electric
demand. A set of multiple DG Units (DGUs), loads and
energy storage devices is identified as a microgrid [2].

In the last decades, due to the prevalence of Alternating
Current (AC) networks, the literature on microgrids mainly
considered AC systems (see for instance [3]–[6] and the
references therein). However, the recent widespread use of
RES as DGUs is motivating the design and operation of
Direct Current (DC) microgrids [7]. Several devices (e.g.
electric vehicles, electronic appliances, batteries and photo-
voltaic panels) can indeed be directly connected to a DC

?This work is supported by the EU Project ‘MatchIT’ (project number
82203) and the Research Fund for the Italian Electrical System under the
Contract Agreement between RSE S.p.A. and the Ministry of Economic
Development - General Directorate for Nuclear Energy, Renewable Energy
and Energy Efficiency in compliance with the Decree of March 8, 2006.

1M. Cucuzzella, K. C. Kosaraju and J. M. A. Scherpen are with the Jan
C. Wilems Center for Systems and Control, ENTEG, Faculty of Science
and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Gronin-
gen, the Netherlands (email: {m.cucuzzella, k.c.kosaraju,
j.m.a.scherpen}@rug.nl)

2R. Lazzari is with the Department of Power Generation Technologies
and Materials, RSE S.p.A., via Rubattino Raffaele 54, 20134 Milan, Italy
(email: Riccardo.Lazzari@rse-web.it)

3Y. Kawano is with the Graduate School of Engineer-
ing, Hiroshima University, Higashi-Hiroshima, Japan (email:
ykawano@hiroshima-u.ac.jp)

This is the final version of the paper accepted for the inclusion in the
Proceedings of the Conf. on Decision and Control, Nice, France, Dec. 2019.

network avoiding lossy DC-AC conversion stages and the
issues related to the frequency and reactive power con-
trol [8]. Besides the development of industrial, commercial
and residential DC distribution networks, some examples of
existing or promising DC microgrid applications are ships,
mobile military bases, trains, aircrafts and charging stations
for electric vehicles. For all these reasons, control of DC
microgrids and, consequently, DC-DC power converters is
gaining growing interest.

In DC microgrids, control schemes are usually designed
to achieve voltage stabilization and current (or power) shar-
ing (see for instance [9]–[14] and the references therein).
However, the dynamics of the power converters are often
neglected or described by linear models (e.g., buck con-
verters). Differently from [9]–[14], in this paper we design
a robust and decentralized passivity-based control scheme
for regulating the voltage of a DC microgrid through boost
converters, the dynamics of which are nonlinear. Regulating
the voltage towards the nominal value is required to ensure
a proper operation of the connected loads and guarantee the
network stability.

A. Literature Review and Main Contributions

We now provide a brief comparison with some existing
theoretical results dealing with the design of voltage con-
trollers for boost converters. Simple tuning rules of passivity-
preserving controllers are provided in [15], while stability
in presence of a bounded control input is analyzed in [16].
However, only constant impedance loads are considered,
the network dynamics are neglected and in [16] the load
resistance is assumed to be known. In [17] and [18], Plug-
and-Play voltage controllers are proposed. More precisely,
the controller designed in [17] is robust with respect to
load uncertainties. However, the line dynamics are neglected
and the model linearized around the equilibrium point is
studied. In [18] the microgrid stability is proved considering
a bounded control input. However, only constant current
loads are considered and the controller requires local infor-
mation (including the load) and the value of the resistance
of the lines interconnecting neighboring nodes. Under the
assumption that the equilibrium point is known, a novel
nonlinear control law that takes into account the constraints
of the control action is proposed in [19].

We can now list the main contributions of this work:
1) Robustness: Differently from [16], [18] and [19], the

proposed decentralized control scheme is robust with respect
to unknown loads and other parameter uncertainty (e.g., line
and filter impedances). Specifically, robustness is obtained
by exploiting a new passivity property.
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2) Passivity framework: Differently from [15], [16], [18]
and [19], where a shifted storage function (or shifted Hamil-
tonian) is adopted, we propose a Krasovskii-type storage
function (see for instance [20] and [21]) and establish a new
(local) passivity property for the considered DC microgrid.
More precisely, the input port-variable of the corresponding
passive map is equal to the first-time derivative of the control
input. Then, the integrated input port-variable is used to
shape (input shaping methodology [22]) the closed loop
storage function such that it has a minimum at the desired
equilibrium point. Convergence to the desired equilibrium is
established together with extremely simple tuning rules.

3) Nonlinear load model: Besides considering the nonlin-
ear dynamics of the boost converter and resistive-inductive
lines, differently from [15]–[19], we adopt a general nonlin-
ear load model (called ZIP) including constant impedance
‘Z’, constant current ‘I’ and constant power ‘P’.

4) Validation: The proposed control strategy is verified
through experiments on a real DC microgrid test facility at
Ricerca sul Sistema Energetico (RSE), Milan, Italy, show-
ing excellent closed-loop performance (see [23] for more
information about the experimental setup where we have
performed our tests).

B. Outline

The present paper is organized as follows. The microgrid
model is described in Section II, while the control objective is
formulated in Section III. In Section IV, the proposed control
scheme is designed and the stability of the controlled micro-
grid analyzed. In Section V, the proposed control scheme is
validated through experiments on a real DC microgrid and,
finally, conclusions are gathered in Section VI.

C. Notation

Let 0 be the vector of all zeros of suitable dimension and
let 1n ∈ Rn be the vector containing all ones. The i-th
element of vector x is denoted by xi. A steady state solution
to system ẋ = ζ(x), is denoted by x, i.e., 0 = ζ(x). A
constant signal is denoted by x∗. Given a vector x ∈ Rn,
[x] ∈ Rn×n indicates the diagonal matrix whose diagonal
entries are the components of x. Let ‘◦’ denote the Hadamard
product, i.e., given vectors x, y ∈ Rn, (x ◦ y) ∈ Rn is a
vector with elements (x ◦ y)i := xiyi for all i = 1, . . . , n.
Let A ∈ Rn×n be a matrix. In case A is a positive definite
(positive semi-definite) matrix, we write A � 0 (A � 0).
The n× n identity matrix is denoted by In. Given a set Ω,
|Ω| represents the cardinality of Ω.

TABLE I
DESCRIPTION OF THE USED SYMBOLS

State variables ZIP loads

Is Generated current G∗l Load conductance
V Load voltage I∗l Load current
I Line current P ∗l Load power

Inputs Filters and lines

u Control input Ls, C Filter inductance, capacitance
V ∗s Voltage source R,L Line resistance, inductance

II. DC MICROGRID MODEL

The DC microgrid is represented by a connected and
undirected graph G = (V, E), where V = {1, ..., n} is the set
of nodes and E ⊆ V × V represents the set of the resistive-
inductive lines interconnecting the nodes. Each node, which
we call Distributed Generation Unit1 (DGU), includes a DC-
DC boost converter supplying an unknown load. A schematic
electrical diagram of the considered DC network including
a DGU and a power line is illustrated in Fig. 1 (see also
Table I for the description of the used symbols).

By applying the Kirchhoff’s laws, the average2 governing
dynamic equations of the node i ∈ V are the following:

Lsiİsi = − (1− ui)Vi + V ∗si

CiV̇i = (1− ui) Isi − Ili(Vi)−
∑
k∈Ei

Ik,
(1)

where Isi : R≥0 → R, Ik : R≥0 → R, Vi : R≥0 →
R>0, Ili(Vi) : R>0 → R≥0, ui : R≥0 → [0, 1) and
V ∗si, Lsi, Ci ∈ R>0. Moreover, Ei is the set of power lines
connected to the DGU i and Ik is the current flowing on the
line k ∈ Ei. Let k be the power line interconnecting DGUs
i, j ∈ V . Then, the dynamic of Ik in (1) is given by

Lk İk = (Vi − Vj)−RkIk, (2)

with Lk, Rk ∈ R>0. Moreover, the term Ili(Vi) in (1)
represents the current demand3 of load i ∈ V and (generally)
depends on the node voltage Vi. In this work, we consider
a general nonlinear load model including the parallel com-
bination of the following load components:

1) constant impedance: Ili = G∗liVi, with G∗i ∈ R>0,
2) constant current: Ili = I∗li, with I∗li ∈ R≥0, and
3) constant power: Ili = V −1i P ∗li, with P ∗li ∈ R≥0.

To refer to the load types above, the letters ‘Z’, ‘I’ and ‘P’,
respectively, are often used in the literature [9]. Therefore,
in presence of the so-called ZIP loads, Ili(Vi) in (1) is given
by

Ili(Vi) = G∗liVi + I∗li + V −1i P ∗li. (3)

1Note that, we consider generation units only for the sake of simplicity
and without loss of generality. In the experiments (see Section V), the
controlled nodes are indeed energy storage units, i.e., batteries.

2Under the condition that the Pulse Width Modulation (PWM) frequency
is sufficiently high, the state of the system can be replaced by the average
state representing the average inductor currents and capacitor voltages.
Consequently, the switching input is replaced by the so-called duty cycle.

3The results presented in this work hold also in case of the so-called net
generating loads, i.e., Ili(Vi) < 0.



The symbols used in (1)–(3) are described in Table I.
We represent the microgrid topology by using its corre-

sponding incidence matrix D ∈ Rn×|E|. The ends of edge
k ∈ E are arbitrarily labeled with a + and a −. More
precisely, the entries of D are given by Dik = 1 if i is
the positive end of k, Dik = −1 if i is the negative end
of k, and Dik = 0 otherwise. The overall microgrid system
(1), (2) in presence of ZIP loads (3) can now be written
compactly for all nodes i ∈ V as follows:

Lsİs = − (1n − u) ◦ V + V ∗s

CV̇ = (1n − u) ◦ Is −G∗l V − I∗l − [V ]−1P ∗l +DI

Lİ = −D>V −RI,
(4)

where Is : R≥0 → Rn, V : R≥0 → Rn>0, I : R≥0 → R|E|,
u : R≥0 → [0, 1)n, V ∗s ∈ Rn>0 and I∗l , P

∗
l ∈ Rn≥0. Moreover,

the matrices Ls, C,G∗l , L and R have appropriate dimensions
and are constant, positive definite and diagonal.

III. PROBLEM FORMULATION: VOLTAGE REGULATION

In this section, we formulate the control objective aiming
at regulating the voltage of a boost-based DC microgrid.
First, we notice that for given u∗, V ∗s , G

∗
l , I
∗
l and P ∗l , a

steady state solution (Is, V , I) to system (4) satisfies

V = (In − [u∗])
−1
V ∗s (5a)

(In − [u∗]) Is = G∗l V + I∗l + [V ]−1P ∗l −DI (5b)

I = −R−1D>V , (5c)

where from (5a) it follows that the i-th boost output voltage
V i is higher than the voltage source V ∗si, i ∈ V , while (5b)
implies4 that current balance is achieved at the steady state,
i.e., the total current 1> (In − [u∗]) Is injected by the boost
converters is equal to the total current 1>(G∗l V + I∗l +
[V ]−1P ∗l ) demand of the ZIP loads. Moreover, in order to
guarantee a proper functioning of the connected loads, it is
required that the current balance is achieved at the desired
voltage value. Consequently, before formulating the control
objective, we introduce the following assumption on the
existence of a desired reference voltage for each DGU:

Assumption 1 (Desired voltage) There exists a constant
desired reference voltage V ∗di satisfying5 V ∗di ≥ V ∗si and
V ∗di >

√
P ∗li/G

∗
li, for all i ∈ V .

Given V ∗d = [V ∗d1, . . . , V
∗
dn]T , the control objective is then

formulated as follows:

Objective 1 (Voltage regulation)

lim
t→∞

V (t) = V = V ∗d .

4The incidence matrix D, satisfies 1>nD = 0.
5The condition V ∗di ≥ V ∗si is a requirement for any boost converter, the

aim of which is indeed to increase the output voltage Vi with respect to
the voltage source V ∗si. The condition V ∗di >

√
P ∗li/G

∗
li will be clear after

definig the set ZZIP in the next section. We simply notice that in absence
of constant power load, i.e., P ∗li = 0, it becomes V ∗di > 0.

Moreover, in order to permit the controller design in the
next section, the following assumption is introduced on the
available information:

Assumption 2 (Available information) The state variables
Isi, Vi and the voltage source V ∗si are locally available at
the DGU i.

Consequently, the control scheme we design in Section IV to
achieve Objective 1 needs to be fully decentralized, increas-
ing the practical applicability of the proposed approach.

Remark 1 (Microgrid uncertainty) Note that, according
to Assumption 2, the parameters I∗l , P

∗
l , G

∗
l , Ls, L, C,R of

the ZIP loads, lines and boost converters are not known.
As a consequence, we need to design a control scheme that
achieves Objective 1 independently of the system param-
eters. This is in contrast to [16], [18] and [19], where
the controller requires some information about the system
parameters.

IV. THE PROPOSED SOLUTION

In this section, we introduce the key aspects of the pro-
posed decentralized passivity-based control scheme aiming
at achieving Objective 1. More precisely, we first augment
system (4) with additional dynamics. Secondly, we propose
a Krasovskii-type storage function (see for instance [20] and
[21]) and establish a (local) passivity property for the aug-
mented system. The input port-variable of the corresponding
passive map is equal to the first-time derivative of the control
input. Then, we use the integrated input port-variable to
shape the closed loop storage function such that it has a
minimum at the desired equilibrium point.

Consider the following auxiliary6 system:

Lsİs =− (1n − u) ◦ V + V ∗s (6a)

CV̇ = (1n − u) ◦ Is −G∗l V − I∗l − [V ]−1P ∗l +DI
(6b)

Lİ =−D>V −RI (6c)

LsÏs =− (1n − u) ◦ V̇ + υc ◦ V (6d)

CV̈ = (1n − u) ◦ İs − υc ◦ Is
−
(
G∗l − [V ]−2[P ∗l ]

)
V̇ +Dİ (6e)

LÏ =−D>V̇ −Rİ (6f)
u̇ = υc, (6g)

which includes also the dynamics of the first-time derivative
of the state and input of system (4).

Let the vector z := (I>s , V
>, I>, İ>s , V̇

>, İ>, u>)> ∈
Z :=

{
z ∈ R5n+2|E| : V ∈ Rn>0, u ∈ [0, 1)n

}
denote the

state of the auxiliary system (6). In order to establish a
passivity property for system (6), we first introduce the
following set:

ZZIP :=
{
z ∈ Z : G∗l − [V ]−2[P ∗l ] � 0

}
.

6The state variables and the control input of the auxiliary system are
Is, V, I, İs, V̇ , İ, u and υc, respectively.



Then, the following result can be proved.

Lemma 1 (Passivity property) System (6) is passive with
respect to the supply rate υ>c

(
İs ◦ V − V̇ ◦ Is

)
and the

storage function

S(z) =
1

2
İ>s Lsİs +

1

2
V̇ >CV̇ +

1

2
İ>Lİ, (7)

for all the trajectories z ∈ ZZIP.

Proof: The storage function S in (7) satisfies

Ṡ = −V̇ >
(
G∗l − [V ]−2[P ∗l ]

)
V̇ − İ>Rİ

+ υ>c

(
İs ◦ V − V̇ ◦ Is

)
≤ υ>c

(
İs ◦ V − V̇ ◦ Is

)
,

along the solutions z ∈ ZZIP to system (6), which concludes
the proof.

Remark 2 (Insights on the storage function S) The stor-
age function S in (7) depends on z, i.e., the entire state of the
auxiliary system (6). This is evident from replacing İs, V̇ , İ
by the corresponding dynamics (6a)–(6c), or rewriting S as
follows:

S(z) =
1

4

(
İ>s Lsİs + V̇ >CV̇ + İ>Lİ

)
+

1

4

(
f>IsL

−1
s fIs + f>V C

−1fV + f>I L
−1fI

)
,

where fIs : Rn>0 × [0, 1)n → Rn, fV : Rn × Rn>0 × R|E| ×
[0, 1)n → Rn, and fI : Rn>0 × R|E| → R|E| represent the
right-hand sides of (6a)–(6c), respectively. Moreover, it will
be shown in Theorem 1 that using (7) to design the controller
permits, differently from [16] and [18], the achievement of
Objective 1 despite the system uncertainty (see Remark 1).
However, the cost of guaranteeing robustness is the need of
information about the first-time derivative of the signals Is
and V (see Remark 3).

Before designing the controller and introducing the main
result of this work, we show that a unique steady state
solution to system (6) exists.

Lemma 2 (Existence of a unique steady state solution)
Given υc = 0 and u ∈ [0, 1)n, there exists a unique steady
state solution z = (Is, V , I,0,0,0, u) ∈ Z to system (6),
satisfying

V = (In − [u])
−1
V ∗s

Is = (In − [u])
−1 (

G∗l V + I∗l + [V ]−1P ∗l −DI
)

I =−R−1D>V
0 = V̇

0 = İs

0 = İ

0 = υc.

(8)

Proof: The proof follows from setting the left-hand-side
of system (6) to zero.

We can now show the main result of this paper concerning
the design of a controller that (provably) stabilizes system (6)
achieving Objective 1.

Theorem 1 (Stability) Let Assumptions 1-2 hold. Consider
system (6) controlled by

Tcυc = −Kc (u− u∗d)−
(
İs ◦ V − V̇ ◦ Is

)
, (9)

where u∗di = 1 − V ∗si/V
∗
di is the desired value of the duty

cycle of the boost converter i ∈ V , Tc = diag(Tc1, . . . , Tcn),
Kc = diag(Kc1, . . . ,Kcn) and Tci,Kci ∈ R>0 are the
gains of the controller i ∈ V . Then, the equilibrium
z = (Is, V

∗
d , I,0,0,0, u

∗
d) ∈ ZZIP is asymptotically stable

in ZZIP.

Proof: Consider the desired closed-loop storage func-
tion

Sd(z) = S(z) +
1

2
(u− u∗d)>Kc(u− u∗d), (10)

where S is given by (7). Then, it is immediate to see that Sd
attains a minimum at the equilibrium (Is, V

∗
d , I,0,0,0, u

∗
d),

where V = V ∗d follows from the first line of (8) with u =
u∗d = 1n − [V ∗d ]−1V ∗s . Furthermore, Sd satisfies

Ṡd = −V̇ >
(
G∗l − [V ]−2[P ∗l ]

)
V̇ − İ>Rİ

+ υ>c

(
Kc (u− u∗d) + İs ◦ V − V̇ ◦ Is

)
= −V̇ >

(
G∗l − [V ]−2[P ∗l ]

)
V̇ − İ>Rİ − υ>c Tcυc,

(11)

along the solutions to system (6). From the last line of (11)
it follows that Sd satisfies Ṡd ≤ 0 for all z ∈ ZZIP. Then,
given ε > 0, choose r ∈ (0, ε] such that there exists a ball
Br(z) ⊂ ZZIP centred in z = (Is, V

∗
d , I,0,0,0, u

∗
d) ∈ ZZIP,

i.e.,

Br(z) := {z ∈ ZZIP : ||z − z|| ≤ r} ⊂ ZZIP.

Moreover, let α denote the minimum value of Sd on the
boundary of Br(z), i.e., α = min||z−z||=rSd(z). Since Sd is
positive definite, then α > 0. Take β ∈ (0, α), then the set

Ωβ := {z ∈ Br(z) : Sd(z) ≤ β}

is compact, positively invariant and in the interior of Br(z)
(see [24, Theorem 4.1]). Let now E denote the set of all
points in Ωβ where Ṡd = 0, i.e.,

E :=
{
z ∈ Ωβ : V̇ = 0, İ = 0, υc = 0

}
.

Moreover, let M be the largest invariant set in E. Then,
by LaSalle’s invariance principle [24, Theorem 4.4], every
solution starting in Ωβ approaches M as t approaches
infinity. Consequently, from (6e) we obtain İs = 0 in M ,
and from (9) we can conclude that, in the largest invariant
set M , u = u∗d, implying from (6a) that V asymptotically
converges to V ∗d . We finally conclude the proof observing
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Fig. 2. Electrical scheme of the RSE’s DC microgrid.

from (6b) and (6c) that also Is and I converge to a constant
value satisfying (8).

Remark 3 (Robustness) Note that controller (9) requires
the first-time derivative of the current Is and voltage V . This
makes the proposed controller independent from the load,
line and boost parameters. Controller (9) requires indeed
only the knowledge of u∗d, which depends on V ∗s . This is in
contrast to [16], [18] and [19], where the controller requires
some information about the system parameters.

Remark 4 (ZI loads) We observe that in case of only ZI
loads, i.e., P ∗l = 0, the results developed in this section
can be strengthened. The absence of constant power loads
implies indeed that the passivity property of system (6)
and the result of Theorem 1 hold in the whole set Z .
This immediately follows by noticing that P ∗l = 0 implies
ZZIP ≡ Z .

V. EXPERIMENTAL RESULTS

In order to validate the proposed control scheme, exper-
imental tests have been performed on the DC microgrid
test facility at RSE. The electrical scheme of the setup is
shown in Fig. 2. The RSE’s DC microgrid is unipolar with
a nominal voltage of 380 V and includes a ZIP load, a
DC generator (which emulates a PV plant) and two storage
devices. The batteries are connected to the DC network
through bidirectional boost converters (see [23] and [25]
for more information about the RSE’s DC microgrid and its
parameters). In order to regulate the voltages V2 and V4 at
the nodes 2 and 4 towards the corresponding desired value
V ∗d = 380 V, the control strategy proposed in Section IV
(with Tc = 1× 107 and Kc = 1× 109) is implemented
through dSpace controllers. The currents Il1(V1) and Il3(V3)
demanded by the load and generated by the PV emulator
are treated as disturbances. In the following, we arbitrarily
assume the passive sign convention7.

In the first scenario the system is in a steady state condition
with zero power absorbed by the load or provided by the
generator. Each battery converter regulates its output voltage
at the desired value V ∗d = 380 V. At the time instant t =
5 s the load (see Fig. 3) or the PV emulator (see Fig. 4) ab-
sorbs/generates 20 kW until the time instant t = 45 s. From
Fig. 3 and in Fig. 4, one can observe that, after a transient

7Il1(V1) ≥ 0, Il3(V3) ≤ 0, Is1, Is2 > 0 (Is1, Is2 < 0) if the batteries
charge (discharge).

due to the load/generator variations, the system exhibits a
stable performance. This clearly shows the robustness of the
proposed controller with respect to unknown loads.

In the second scenario the system is in a steady state
condition with a constant power equal to 20 kW provided
by the generator. Each battery converter regulates its output
voltage at the desired value V ∗d = 380 V. At the time
instant t = 5 s the desired value V ∗d2 is changed to 375 V
and at the time instant t = 45 s also the desired value
V ∗d4 is changed to 375 V (dashed line). From Fig. 5, one
can observe that the system exhibits a stable performance
tracking the new desired voltage value. Tracking capabilities
are generally essential to couple primary voltage controllers
with higher-level control schemes that modify the voltage
reference of each node, in order to achieve power sharing
among the nodes of the microgrid. Finally, we notice that
in the discussed scenarios, only the voltages V2 and V4 are
controlled and the deviations from the desired value during
the load and generator variations are less than 4%. In the
uncontrolled nodes, the deviations of the voltages V1 and
V3 from the desired value are due to the line impedances
between the controlled and uncontrolled nodes.

VI. CONCLUSIONS

In this paper a decentralized passivity-based control
scheme is designed to regulate the voltage of a DC microgrid
through boost converters. Using a Krasovskii-type storage
function, a (local) passivity property for the considered
DC microgrid is established. More precisely, the integrated
input port-variable is used to shape the closed loop storage
function. Convergence to the desired equilibrium is proven
in presence of the so-called ZIP (constant impedance ‘Z’,
constant current ‘I’ and constant power ‘P’) loads, showing
robustness with respect to system parameter uncertainties.
The proposed control scheme is validated through exper-
imental tests on a real DC microgrid, showing excellent
closed-loop performances.
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Fig. 3. Scenario 1: closed-loop system performance with a step load
variation of 20 kW.
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