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Abstract— This paper deals with the design of a hierarchical

control scheme for complex islanded Alternate Current (AC)

microgrids. The proposed solution relies on the combined use

of Model Predictive Control (MPC) and Sliding Mode Control

(SMC). The model of the microgrid includes several Distributed

Generation Units (DGus), affected by unknown load dynamics

and modelling uncertainties. Moreover, they are connected

according to an arbitrary complex and meshed topology, taking

into account the interconnecting line dynamics. The proposed

control scheme consists of two control loops. A centralized MPC

supervisor generates the voltage reference values for each DGu,

while fulfilling input and state constraints on the basis of a

reduced order model of the plant. A Suboptimal Second Order

Sliding Mode (SSOSM) control is locally designed for each

DGu to track, in a decentralized way, the voltage references

generated by the supervisor. Simulation results confirm the

effectiveness of the proposed control scheme.

I. INTRODUCTION

Recently, due to the wide diffusion of Renewable Energy
Sources (RES) and active participation of consumers to the
electric market, one of the most relevant key challenges in
power generation and distribution field is the development
of resilient and sustainable small-scale power systems that
integrate the so-called Distributed Generation units (DGus),
storage devices and loads [1]. This challenge can be addressed
by exploiting the concept of “microgrids” and “Smart Grids”,
which are clusters of DGus, loads and storage systems
interconnected through power lines [2]. Moreover, they can
operate disconnected from the main grid, in the so-called
islanded operation mode (IOM) [3].

In a typical microgrid, the presence of new technologies
and tools for the smart metering of the processes is mandatory,
above all because of the unpredictable behaviours of RES
and load dynamics that make the adoption of suitable robust
control strategies essential to regulate the electrical signals
of the microgrid [4]. Technologies used for power systems
have to include protections, data acquisition units and robust
control equipments. Automation is widely spread in this
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systems so that, in the last decades, several solutions have
been proposed to cope with the aforementioned problem.

In the literature, controllers of several types, including PI
control algorithms [5], H• controllers [6], or Model Predictive
Control [7], formulated both in the so-called Grid Connected
Operation Mode (GCOM) and in IOM, have been introduced.
Among the controllers, also Sliding Mode Control (SMC) has
been applied with satisfactory results to power networks [8]–
[13]. SMC is very appreciated for its robustness properties
against a wide class of uncertainties and perfectly fits the
problem to solve [14]. Moreover, SMC belongs to the class of
Variable Structure Control Systems so that it seems perfectly
adequate to control the so-called voltage source converter
(VSC), that is the interface medium between the grid and the
energy source. In fact, power electronic systems represent
a typical example in which the discontinuous control is
intrinsically provided. The so-called chattering phenomenon
is already attenuated by construction thanks to the presence
of the VSC output filter [15]. However, in order to obtain
more regular modulating signals by increasing the natural
relative degree of the auxiliary system, Higher Order Sliding
Mode controllers can be applied, as shown in [8], [10], [11].

In reality, apart from the basic control requirements,
microgrids often requires consensus algorithm in order to
optimize its operation while satisfying some input and state
constraints. Model Predictive Control (MPC) [16], [17] is
widely used to search for an optimal control solution, while
fulfilling the constraints on the basis of a suitable predictor
of the plant behaviour.

In this paper, we propose a hierarchical control architecture
based on the joint use of MPC and SMC [18]–[20], in order
to stabilize the microgrid system and keep the DGus output
voltages in a prescribed boundary layer while achieving the
so-called current sharing, the latter meaning that the overall
load current is equally shared among the DGus [21]. In our
proposal, the low level controller implements a decentralized
second-order sliding mode control strategy, belonging to the
class of Suboptimal algorithms (SSOSM) [22]. This low level
controller is used to track the voltage references generated
by a MPC supervisor based on a reduced order model of the
plant. Finally, a realistic simulation scenario including four
DGus in ring topology has been assessed.

The present paper is organized as follows: in Section II
the microgrid model is introduced and described. In Section
III the control problem is formulated, while in Section IV the
proposed hierarchical control scheme is designed. In Section
V the simulation results are illustrated. Some conclusions are
gathered in Section VI.
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Fig. 1. The considered electrical single-line diagram of a typical islanded AC microgrid composed of two DGUs

II. MICROGRID MODEL

Consider an islanded AC microgrid with n DGus. The
network is represented by a connected and undirected graph
G = (V,E), where the nodes V = {1, ...,n}, represent the
DGus and the edges E ⇢ V ⇥V = {1, ...,m} represent the
distribution lines interconnecting the DGus. The network
structure can be represented by its corresponding incidence
matrix D 2 Rn⇥m. The ends of edge k are arbitrary labeled
with a ‘+’ and a ‘-’. Then, one has that

Dik =

8
><

>:

+1 if i is the positive end of k
�1 if i is the negative end of k
0 otherwise .

Consider the scheme reported in Figure 1 and assume
the system to be symmetric and balanced. For the sake of
simplicity, the dependence of the variables on time t is omitted
throughout this paper. In the stationary abc-frame, by applying
the Kirchhoff’s current (KCL) and voltage (KVL) laws, the
dynamics equations of the microgrid in IOM are expressed
as follow,

8
>>>><

>>>>:

d
dt vabc = [Ct ]�1itabc +[Ct ]�1[D]iabc � [Ct ]�1wabc

d
dt itabc =�[Lt ]�1[Rt ]itabc � [Lt ]�1vabc +[Lt ]�1vtabc

d
dt iabc =�[L]�1[DT ]vabc � [L]�1[R]iabc

, (1)

where sabc = [sT
a ,s

T
b
,sT

c ]
T
2R3n, sp = [sp1

, . . . ,spn ]
T
2Rn, with

p = a,b,c and s 2 {v, it ,w,vt}, while iabc = [iTa , i
T
b
, iTc ]

T
2R3m,

ip = [ip1
, . . . , ipm ]

T
2 Rm. In (1) vabc , itabc , iabc , wabc , and vtabc

represent the following three-phase signals: the loads voltages,
the currents generated by the DGus, the currents along the
interconnecting lines, the currents demanded by the loads,
and the VSCs output voltages. Moreover, in system (1) we
used [H] to denote the following block diagonal matrix

[H] =

2

4
H 0 0
0 H 0
0 0 H

3

5 ,

where H 2 {Ct , Lt , Rt , L, R}, with Ct , Lt , Rt being n ⇥ n
diagonal matrices and L, R being m⇥m diagonal matrices,
e.g., Rt = diag{Rt1 , . . . ,Rtn} and R = diag{R1, . . . ,Rm}, with
Rk = Ri j.

Each three-phase variable of (1) can be transferred to
the rotating dq-frame by applying the Clarke’s and Park’s
transformations. Then, the so-called state-space representation
of the whole system (1) can be expressed as

8
>>>>>><

>>>>>>:

V̇d = w0Vq +C�1
t Itd +C�1

t DId �C�1
t Wd

V̇q =�w0Vd +C�1
t Itq +C�1

t DIq �C�1
t Wq

İtd =�L�1
t Vd �L�1

t Rt Itd +w0Itq +L�1
t Vtd

İtq =�L�1
t Vq �w0Itd �L�1

t Rt Itq +L�1
t Vtq

İd =�L�1DTVd �L�1RId +w0Iq
İq =�L�1DTVq �w0Id �L�1RIq

, (2)

where x = [V T
d ,V T

q , IT
td , IT

tq , IT
d , IT

q ]
T
2 R4n+2m is the state

variables vector, µ = [V T
td ,V T

tq ]
T
2 R2n is the input vector,

w = [W T
d ,W T

q ]T 2 R2n is the disturbance vector. Then, the
previous system, in a more compact form, can be written as

ẋ = Ax+Bµ +Bww (3)

where A 2 R(4n+2m)⇥(4n+2m) is the dynamics matrix of the
microgrid, B 2 R(4n+2m)⇥(2n), and Bw 2 R(4n+2m)⇥(2n).

To permit the controller design in the next sections, the
following assumption is required on states and disturbances.

Assumption 1 All the state variables are measurable, while
the current load disturbances Wd and Wq are unknown but
bounded, of class C and Lipschitz continuous.

III. PROBLEM FORMULATION

Before introducing the control problem that will be solved
in the paper, for the readers’ convenience, some basic notions
on DGus are presented. In islanded operation mode, the
voltage and frequency at the point of common coupling (PCC)
could deviate significantly from the desired values, due to the
power mismatch between the DGu and the load. Therefore,
each DGu has to provide voltage and frequency regulation.
Specifically, in this paper the frequency is controlled in open-
loop by equipping each DGu with an internal oscillator that
provides the Park’s transformation angle q(t) =

R t
t0 w0dt , with

w0 = 2p f0, f0 being the nominal frequency. Moreover, in the
rotating dq-frame, the generated active and reactive powers
can be expressed as

Pi =
3
2
(Vdi Itdi

+Vqi Itqi
), Qi =

3
2
(Vqi Itdi

�Vdi Itqi
). (4)
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Fig. 2. Hierarchical MPC/SMC control scheme, where SS is an appropriate matrix that selects the state S from the overall system state x.

Then, in order to decouple the active and reactive power
control, the quadrature voltage component Vq is regulated to
zero, such that the active and reactive powers in (4) become

Pi =
3
2

Vdi Itdi
, Qi =�

3
2

Vdi Itqi
, (5)

which depend only on the direct and quadrature current
component, respectively.

Assuming that the quadrature voltage component Vq is
steered to zero, relying on (5), we introduce the following
definition of “active current load sharing”.

Definition 1 Direct current sharing is achieved if the overall
direct component of load current is equally shared among
the DGus, i.e.,

Itd = 1nI⇤td , I⇤td =
1
n
1T

n Wd 2 R (6)

where 1n 2 Rn is the vector containing all ones.

Now we are in a position to formulate the control problem.
Let Assumption 1 hold. Given system (1)-(3), design a
hierarchical control scheme capable of guaranteeing that:
i) Vq is steered to zero in a finite time in spite of the
uncertainties; ii) Vd is regulated in order to achieve direct
current sharing while fulfilling input and state constraints;
iii) given constant references and disturbances, the overall
microgrid system is asymptotically stable.

IV. THE PROPOSED HIERARCHICAL CONTROL SCHEME

In this section, the proposed hierarchical control scheme
illustrated in Figure 2 is described. It consists of two control
loops. The outer one is based on a centralized MPC supervisor,
while a decentralized SSOSM control algorithm is locally
used to solve the aforementioned voltage tracking control
problem. Since the SSOSM component is very simple from
a computational viewpoint, it is locally implemented so that
it can run at a higher rate to allow one to develop the MPC
controller at slower rate relying on a simplified model.

A. SSOSM Decentralized Local Control
Consider the state-space model (3) and set the so-called

sliding variables vector as

sd =Vd �V ?
d

sq =Vq �V ?
q ,

(7)

where V ?
d and V ?

q are the reference values.
In order to design the controller, the following assumption

is required on the generation of reference values.

Assumption 2 The voltage reference V ?
d is of class C2 and

with first time derivative Lipschitz continuous, while, in order
to decouple the active and reactive power control, V ?

q = 0.

Let r be the relative degree of the system, i.e., the minimum
order r of the time derivative s (r) of the sliding variable in
which the control µ explicitly appears. With reference to
(7), one can verify that r is equal to 2, so that a second
order sliding mode (SOSM) control naturally applies [22].
According to the SOSM control theory, the so-called auxiliary
variables x1n = sn and x2n = ṡn , with the subscript n = d,q,
have to be defined and the corresponding auxiliary systems
can be expressed as

⇢
ẋ1n = x2n

ẋ2n = fn(x,w)+gn µn
, (8)

where µn are the control inputs previously defined, and x2n
is assumed to be unmeasurable. More specifically, one has
that

fd(x,w) =�
�
w2

0 In⇥n +C�1
t L�1

t +C�1
t DL�1DT �Vd

�C�1
t L�1

t Rt Itd +2w0C�1
t Itq

�C�1
t DL�1RId +2w0C�1

t DIq
�C�1

t Ẇd �w0C�1
t Wq �V̈ ?

d

fq(x,w) =�
�
w2

0 In⇥n +C�1
t L�1

t +C�1
t DL�1DT �Vq

�2w0C�1
t Itd �C�1

t L�1
t Rt Itq

�2w0C�1
t DId �C�1

t DL�1RIq
+w0C�1

t Wd �C�1
t Ẇq

gd = gq =C�1
t L�1

t ,

(9)



are allowed to be uncertain but bounded, i.e.,

| fni(·)| Fni , Gminni
 gnii  Gmaxni

, i = 1, . . . ,n , (10)

with Fni , Gminni
and Gmaxni

, n = d,q, being known positive
constants. Note that, it is reasonable to assume that such
bounds exist. In fact, the functions fn depend on electric
signals related to the finite power of the system, while gnii
are uncertain constant values. In practical cases, these bounds
can be estimated relying on data acquisition in different test
conditions and are therefore assumed known.

The i-th control law, µni , which is proposed to steer x1ni
and x2ni

, i = 1, . . . ,n, to zero in a finite time in spite of
the uncertainties, in analogy with [22], can be expressed as
follows

µni =�aniMmaxni
sgn
⇣

x1ni
�

1
2 x1maxni

⌘
, (11)

with bounds

Mmaxni
> max

 
Fni

a⇤
ni

Gminni

;
4Fni

3Gminni
�a⇤

ni
Gmaxni

!
(12)

a⇤

ni
2 (0,1]\

✓
0,

3Gminni

Gmaxni

◆
. (13)

B. MPC Centralized Supervisor
By virtue of the presence of the SSOSM controller that,

according to Assumption 2, regulates the voltage Vq to zero
in a finite time, the MPC module can be designed on the
basis of a simplified model with a beneficial effect in terms
of computational burden, i.e.,

8
>>>>>><

>>>>>>:

V̇d =C�1
t Itd +C�1

t DId �C�1
t bWd

İtd =�L�1
t Vd �L�1

t Rt Itd +w0Itq +L�1
t ud

İtq =�w0Itd �L�1
t Rt Itq +L�1

t uq
İd =�L�1DTVd �L�1RId +w0Iq
İq =�w0Id �L�1RIq
y =Vd

, (14)

where u = [ud , uq]T is the input vector generated by the MPC
supervisor, while bWd is the load estimate, which can be
obtained by estimating V̇di in a finite time via the Levant’s
differentiator

⇢
˙̂z1i =�l0i |ẑ1i � z1i |

1/2 sgn(ẑ1i � z1i)+ ẑ2i
˙̂z2i =�l1i sgn(ẑ1i � z1i)

, (15)

where ẑ1i , ẑ2i are the estimated values of Vdi , V̇di , respectively,
and l0i = 1.5L1/2

i , l1i = 1.1Li,Li > 0, is a possible choice
of the differentiator parameters [23]. Then, one has

bWd =�Ct ẑ2 + Itd +DId . (16)

Note that the MPC controller is designed on the discrete
time version of the reduced order system (14) and the
feedback is provided with sampling time T .

The adopted MPC controller consists in solving the so-
called Finite-Horizon Optimal Control Problem (FHOCP),
that is minimizing, at any sampling time instant tk, a
suitably cost function with respect to the control sequence
u[tk,tk+N�1|tk] := [u0(tk), u1(tk), . . . ,uN�1(tk)], with N � 1 being

the prediction horizon. In this paper, the main objective is to
obtain current sharing among the DGus of the microgrid. As
illustrated in the overall control scheme in Figure 2, after the
generation of the optimal control sequence u

o
[tk,tk+N�1|tk]

:=
[uo

0(tk), uo
1(tk), . . . ,u

o
N�1(tk)], the latter is fed into the reduced

order model (14) in order to generate the voltage references
V ?

d for the local SSOSM controllers.

Remark 1 Note that, according to Assumption 2, local
controllers require smooth V ?

d signals. Then, in order to
satisfy Assumption 2, local controllers can be enhanced with
pre-filters.

Let L = DQDT denote the weighted Laplacian matrix
associated with the network graph. The cost function in
question to minimize with respect to u[tk,tk+N�1|tk] is a quadratic
function as

J(Itd (tk),ui[tk ,tk+N�1 |tk ]
,N) =

N�1

Â
j=0

IT
td (tk+ j)LItd (tk+ j)+uT (tk+ j)Ru(tk+ j) , (17)

where L is the semi-positive definite Laplacian matrix, while
R is the matrix of the input weights. The cost function (17) is
subject to the hard constraints represented by the dynamics of
the discrete time version of (14), and inequalities constraints
on states and input variables, i.e.,

Vd(tk+ j) 2 Vd (18)
u(tk+ j) 2 U (19)

with j = 1, . . . ,N �1.
Then, according to the Receding Horizon strategy, the

applied piecewise-constant control law is the following

ui(t) = kMPC(Itd (tk)), t 2 [tk, tk+1) (20)

where tk+1 � tk = T is the MPC sampling time, and

kMPC(Itd (tk)) := uo
0(tk) (21)

with uo
i0(tk) the first value at tk of the optimal control sequence

obtained by solving the FHOCP.

Remark 2 Note that for a connected and undirected graph
the null space of the Laplacian matrix is N (L) = {a1n, a 2

R}, so that in the cost function (17), the term IT
tdLItd is equal

to zero if and only if Itd = a1n. Then, considering that Vq is
steered to zero via the local SSOSM control, from (2) one
can compute the steady state value of Itd , i.e.,

0 = a1n +DId �Wd
0 = a1T

n 1n +1T
n DId �1T

n Wd .
(22)

Since 1T
n D = 0, one can verify that a = 1

n1
T
n Wd, i.e., accord-

ing to Definition 1, direct current sharing is achieved.

V. SIMULATION RESULTS

In this section, the proposed control scheme is evaluated
in simulation through the realistic model of an AC islanded



TABLE I
ELECTRICAL PARAMETERS OF MICROGRID IN FIG. 3

DGus Filter Parameters Shunt capacitance Load Currents References
Rti [m⌦] Lti [mH] Cti [µF] Wdi [A] Wqi [A] V ?

qi
[V]

DGu1 40.2 9.5 62.86 50 -20 0
DGu2 38.7 9.2 62.86 100 -15 0
DGu3 34.6 8.7 62.86 40 -10 0
DGu4 31.8 8.3 62.86 80 -18 0

TABLE II
ELECTRICAL PARAMETERS OF THE DISTRIBUTION LINES

Line impedance Zi j Ri j [⌦] Li j [µH]

Z12 0.25 1.2
Z23 0.27 1.3
Z34 0.24 1.8
Z14 0.26 2.1

microgrid with nominal frequency f0 = 60 Hz, and consisting
only of four DGus (n =4) for the sake of clarity. Note that the
proposed approach has a more general validity. The DGus
are in a ring topology (m =4), as illustrated in Figure 3.
The incidence matrix D 2 R4⇥4, which describes the power
network topology can be expressed as

D =

2

664

�1 0 0 �1
1 �1 0 0
0 1 �1 0
0 0 1 1

3

775 ,

while the electrical parameters of each DGu and of the
interconnecting distribution lines are reported in Table I and
in Table II, respectively. The VSC control amplitude Mmax,
for all the decentralized controllers, is set equal to 1000,
in order to consider a DC renewable energy voltage source
VDC = 1000 V. Then, the sliding mode control law, switching

DGu1

DGu2

DGu4

DGu3

Z12

Z14

Z23

Z34

Fig. 3. Scheme of the considered microgrid composed of 4 DGus. The
arrows indicate the positive direction of the currents through the power
network
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Fig. 4. d-components of the loads voltages and reference values generated
by the MPC centralized supervisor
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Fig. 5. d-components of the generated currents

between ±1000, emulates the VSC behaviour.
The performances of the considered microgrid are assessed

by taking into account unknown load dynamics and piece-wise
constant d-component voltage reference values, generated
by the centralized MPC sypervisor. More specifically, the
weighted Laplacian matrix is set equal to L= DQDT , with
Q = 105Im⇥m, while R = 10�5In⇥n, In⇥n being the n ⇥ n
identity matrix. The prediction horizon is N = 5, with
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Fig. 6. d-components of the exchanged currents through the interconnecting
lines

sampling time T = 0.25s. Finally, input and state constraints
are set equal to umin = �1000 ·12n, umax = 1000 ·12n, and
Vdmin = 115

p
2 ·1n, Vdmax = 125

p
2 ·1n, 1n being the unit

vector with n components, respectively.
In Figure 4 the time evolution of the d-components of the

loads voltages is reported. One can observe in Figure 4 that
the local SSOSM controllers guarantee finite time voltage
tracking performance with respect to the corresponding direct
reference values generated by the MPC component. Moreover,
note that all the voltage constraints are suitably fulfilled as
it is evident in the case of Vd2 . The quadrature voltage Vq
is steered to zero in a finite time allowing one to use the
reduced order system (14) to solve the FHOCP via the MPC
supervisor. In Figure 5 the direct components of the generated
currents are represented. One can observe that the control
objective of current sharing is completely satisfied and, when
the load variation DWd4 = 20 A occurs at the time instant
t = 1.2s, the controlled system reacts to establish the current
sharing again. In Figure 6 the time evolution of the direct
components of the exchanged currents through the distribution
lines interconnecting the DGus is illustrated.

VI. CONCLUSIONS

In this paper, a hierarchical control architecture based on the
joint use of MPC and SMC, is designed in order to stabilize
islanded AC microgrids with arbitrary topology and affected
by unavoidable modelling uncertainties. The control objective
is indeed to keep the DGus output voltages in a prescribed
boundary layer while achieving the so-called current sharing
among the DGus. The low control level uses SSOSM control
strategy in order to track, in a decentralized way, the voltage
references generated by a MPC supervisor. The performances
of the proposed algorithm have been evaluated in simulation
considering a microgrid with four DGus in a ring topology.
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