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Abstract— In this paper, we propose a robust voltage control

scheme for microgrids based on a suitable designed third-order

sliding mode (3-SM) controller. The use of 3-SM allows to

reject matched disturbances and unmodeled dynamics, due to

the presence of a voltage-sourced-converter (VSC) as interface

with the main grid. The motivation for using a 3-SM control

approach, apart from its property of providing robustness to

the scheme in front of a significant class of uncertainties, is

also given by its capability of enforcing sliding modes of the

controlled system with chattering alleviation. The microgrid

system controlled via the proposed 3-SM approach proves to

exhibit appreciable stability properties. Specifically, the voltage

error with respect to the required reference is steered to

zero in a finite time. The comparison with respect to second

order sliding mode (SOSM) and PI controllers shows the

beneficial effects of the proposed strategy, and simulation results

confirm that our control law provides closed-loop performance

complying with the IEEE recommendations for power systems.

I. INTRODUCTION

Nowadays, the continuously growing demand of energy
and the need of efficient power plants for a sustainable
generation and distribution have caused the diffusion of the
concept of “smart grid” [1]. A smart grid is an advanced
networked system with some intelligent capabilities in terms
of energy generation and metering, so as to manage electricity
demand and distribution in an efficient and economically
convenient manner. The key-point of a smart-grid is the widely
use of renewable energy sources, which are geographically
distributed and produce several beneficial effects in terms of
reduction of carbon dioxide emissions and pollutants.

The introduction of smart grid implies a significant reno-
vation of the current electrical system, which would present
several distributed generation units (DGus), each one able
to independently fulfill the owner energy demand, while
guaranteeing the requirements imposed by the integration
with the main grid [2]–[5]. Note that, a set of multiple
mutual connected DGus is regarded as a “microgrid” in the
literature [6]–[8].

Moreover, the discontinuous nature of renewable energy
sources makes mandatory the introduction of robust control
strategies to regulate voltage, fault detection, reliability, and
power losses, which are among the issues to solve in order
to integrate DGus into the distribution network [9]. In the
literature, several control strategies have been proposed to
stabilize a DGu in spite of the presence of some uncertainties.
The majority of them use traditional PI controllers and integral
oscillators to control the voltage and the frequency in the so-
called islanded operation mode (IOM) [10]–[12]. Furthermore,
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master-slave configurations [12] and Plug-and-Play (PnP)
decentralized algorithms [13] have been proposed to manage
the generation in a large scalable meshed microgrid.

One of the crucial problems in DGus is the presence of
the voltage-sourced-converter (VSC) as interface with the
main grid. The VSC can be viewed as a source of modelling
uncertainty and disturbances. This fact makes the adoption of
a robust control design methodology mandatory. Sliding mode
(SM) control [14], [15] is a very well-known control approach,
particularly appreciated for its robustness properties. Yet, SM
control requires the use of discontinuous control laws, which
can enforce the so-called chattering effect [16]–[18]. An
effective way to perform chattering alleviation is to increase
the order of the sliding mode enforced by the controller.
This is the reason why higher order sliding mode (HOSM)
controllers [19], and, in particular, second order sliding mode
(SOSM) controllers [20]–[23] have been developed in the
last two decades.

In this paper, a model of a DGu is first formulated. It is
observed that its natural relative degree is equal to 2. Thus, the
use of 3-SM control is proposed to obtain, at the same time
disturbance rejection, robustness versus matched uncertainty
and chattering alleviation. The validation and verification of
the proposed approach have been carried out in simulation,
relying on a model of a microgrid in IOM with three DGus in
a master-slave configuration. Satisfactory performances have
been obtained by the comparison of 3-SM with respect to
a SOSM controller and a PI traditional controller. Note that
the use of SOSM control laws to solve the control problem
in question has been addressed in details in [24].

The present paper is organized as follows. In Section II
the DGu architecture is introduced, while in Section III the
control problem is formulated. The proposed 3-SM control
strategy is reported in Section IV, while the stability analysis
is discussed in Section V. Simulation results are presented
in Section VI, and some conclusions (Section VII) end the
paper.

II. PRELIMINARIES

In this section, for the readers’ convenience, a brief
description of the so-called DGu architecture is presented,
along with the main operation modes. In Fig. 1 the schematic
electrical single-line diagram of a typical DGu is illustrated.
The basic element of a DGu is typically an energy source
of renewable type, which can be represented by a direct
current (dc) voltage source (Vdc). The latter is interfaced to
the main grid through two components: a voltage-sourced-
converter (VSC) and a filter. Specifically, the first component
is a pulse width modulation (PWM) inverter, which converts



dc to alternate current (ac), while the second component is a
resistive-inductive (RtLt ) filter, able to extract the fundamental
frequency of the VSC output voltage. The DGu and the
main grid are coupled at the so-called point of common
coupling (PCC) where a local three-phase parallel resistive-
inductive-capacitive (RLC) load is connected. The main grid

Fig. 1. Single-line diagram of the considered DGu.

is represented by a resistive-inductive (RsLs) line impedance
and by an ac voltage source. The single DGu can work in grid-
connected operation mode (GCOM) and in IOM. Note that
in this paper only this second operation mode is considered,
since in GCOM the PCC voltage magnitude and frequency
are mainly imposed by the main grid.

A. Operation Modes

In GCOM, the system is forced to operate in stiff syn-
chronization with the grid by using the so-called phase-
locked-loop (PLL), which provides the reference phase-angle
q for the Park’s transformation [25]. In order to achieve
the lock with the main grid, the PCC quadrature voltage
component Vq is steered to zero by using a proportional-
integral (PI) controller. In such a case, the DGu operates
in current control mode in order to supply the active and
reactive power references Pre f , Qre f , which are proportional
to the direct and quadrature current component, respectively.

In IOM, i.e. when the circuit breaker (named SW in
Fig. 1) is open, the PCC voltage and frequency could vary
significantly with respect to the rated values, due to the power
mismatch between the DGu and the load. Then, the DGu
has to provide the voltage and frequency control in order to
keep the load voltage magnitude and frequency constant to
the corresponding rated values.

Since the microgrid is controlled by adopting the master-
slave configuration, then only the Master DGu (DGuM)
switches to the voltage control mode and has the task of
maintaining the microgrid voltage constant with respect to
the required reference, while all the other DGus regulate
their own active and reactive power with the conventional
dq-components current control loop [12].

According to the Park’s transformation, the ac output volt-
ages generated by the VSC are referred to the synchronous ro-
tating dq-frame. Then, the direct and quadrature components
are compared with the corresponding references to compute

the errors which are sent to the voltage controller in order to
generate the control variables Udq, which dimensionally are
voltages. The latter are transformed back into the stationary
abc-frame according to the inverse Park’s transformation, and
used by the PWM, to generate the modulating signals (see
Fig. 1). In IOM the Park’s transformation angle q is provided
by an internal oscillator set to the rated angular frequency,
namely w0 = 2p f0.

III. PROBLEM FORMULATION

Consider the scheme of the DGu in Fig. 1 and assume
the system to be symmetric and balanced. Applying the
Kirchhoff’s current (KCL) and voltage (KVL) laws, according
to the abc-frame, the governing equations for the DGu in
IOM, are
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it,abc =
1
R vabc + iL,abc +C dvabc

dt
vt,abc = Lt

dit,abc
dt +Rtit,abc + vabc

vabc = L diL,abc
dt +RliL,abc

(1)

where it,abc, vabc, iL,abc and vt,abc are 3⇥1 vectors, elements
of which are the corresponding quantities of each phase.
These latter represent the currents delivered by the DGu, the
load voltages, the currents fed into the load inductance (L)
and the VSC output voltages, respectively. Note that, for the
sake of simplicity, the dependence of all the variables on
time t is omitted when obvious.

Each three-phase variable sabc of (1) can be transferred to
the synchronous rotating dq-frame by applying the Clarke’s
and Park’s transformations as follows

sab = sae j0 + sbe j 2p
3 + sce j 4p

3 (2)

Sdq = (Sd + jSq) = sab e� jq (3)

with s 2 {it ,v, iL,vt} and S 2 {It ,V, IL,Vt}. Then, the so-called
state-space representation of (1) results in being
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ẋ1(t) =� 1
RC x1(t)+w0 x2(t)+ 1

C x3(t)� 1
C x5(t)

ẋ2(t) =�w0 x1(t)� 1
RC x2(t)+ 1

C x4(t)� 1
C x6(t)

ẋ3(t) =� 1
Lt

x1(t)� Rt
Lt

x3(t)+w0 x4(t)+ 1
Lt

u1(t)
ẋ4(t) =� 1

Lt
x2(t)�w0 x3(t)� Rt

Lt
x4(t)+ 1

Lt
u2(t)

ẋ5(t) = 1
L x1(t)� Rl

L x5(t)+w0 x6(t)
ẋ6(t) = 1

L x2(t)�w0 x5(t)� Rl
L x6(t)

y1(t) = x1(t)
y2(t) = x2(t)

(4)

where x = [Vd Vq Itd Itq ILd ILq]T 2 X ⇢ R6 is the state
variables vector, u = [Vtd Vtq]T 2 U ⇢ R2 is the input vector
and y = [Vd Vq]T 2 R2 is the output vector.

The control objective consists in designing a robust control
for microgrids working in IOM, i.e. after an islanded event has
occurred, so as to guarantee that the controlled voltage follows
the corresponding reference, while ensuring satisfactory
closed-loop performance even in presence of uncertainties.

IV. CONTROL STRATEGY

In this section a higher order sliding mode (HOSM) control
approach is adopted to solve the aforementioned control
problem. In particular a 3-SM control law is designed.



Consider the islanded state-space model (4) and select the
so-called “sliding variables” s1(t)= y1,re f �y1(t) and s2(t)=
y2,re f � y2(t), respectively. Since the relative degree r of the
system (i.e. the minimum order r of the time derivative s (r), of
the sliding variable in which the control u explicitly appears)
is equal to 2, a SOSM control naturally applies [20], [21].
However, in order to attenuate the chattering phenomenon,
i.e. high frequency oscillations of the controlled variable,
which can be dangerous in terms of harmonics affecting the
electrical signals, the procedure suggested in [20], consisting
in artificially increasing the system relative degree, can be
applied.

Inspired by [19], in this paper we propose a 3-SM control
approach to solve the microgrid voltage control problem
in question. According to the HOSM control theory, we
need to define the so-called auxiliary variables x1,1(t) = s1(t)
and x2,1(t) = s2(t) such that the corresponding augmented
auxiliary systems can be expressed as
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ẋi,1(t) = xi,2(t)
ẋi,2(t) = xi,3(t)
ẋi,3(t) = ji(x(t))+ giwi(t)
u̇i(t) = wi(t)

i = 1,2 (5)

where

j1(x(t)) = (w2
0 � 1

(RC)2 +
1

LtC + 1
LC )ẋ1(t)+ 2w0

RC ẋ2(t)+

+( 1
RC2 +

Rt
LtC )ẋ3(t)� 2w0

C ẋ4(t)+
�( 1

RC2 +
Rl
LC )ẋ5(t)+ 2w0

C ẋ6(t)

j2(x(t)) = � 2w0
RC ẋ1(t)+(w2

0 � 1
(RC)2 +

1
LtC + 1

LC )ẋ2(t)+

+ 2w0
C ẋ3(t)+( 1

RC2 +
Rt

LtC )ẋ4(t)+
� 2w0

C ẋ5(t)� ( 1
RC2 +

Rl
LC )ẋ6(t)

gi =
1

LtC
(6)

are allowed to be uncertain with known bounds, i.e.

|ji(·)| Fi (7)

Gi,m  |gi| Gi,M (8)

with Fi, Gi,m and Gi,M being positive known constants. Note
that the existence of these bounds is true in practice due to
the fact that ji(·), gi are linear combinations of the electrical
signals related to the finite power of the system.

The control law proposed to steer xi,1(t), xi,2(t) and
xi,3(t), i = 1,2 to zero in a finite time in spite of the
uncertainties, can be written as follows

wi(s̄i)=�ai
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>>:

wi,1 = sgn(s̈i), s̄i 2 Mi,1/Mi,0

wi,2 = sgn(ṡi +
s̈2

i wi,1
2ai,r

), s̄i 2 Mi,2/Mi,1

wi,3 = sgn(si(s̄i)), else

(9)

where s̄i = (si, ṡi, s̈i)T and

si(s̄i) = si+
s̈3

i
3a2

i,r
+wi,2

"
1

pai,r

✓
wi,2ṡi+

s̈2
i

2ai,r

◆ 3
2
+

ṡis̈i

ai,r

#

ai,r being the reduced control amplitude, such that

ai,r = aiGi,m �Fi > 0 (10)

In (9), (10) there are no parameters to be tuned, except for
the control amplitude ai. In (9) the manifolds Mi,0, Mi,1, Mi,2
are defined as

Mi,0 = {s̄i 2 R3 : si = ṡi = s̈i = 0}

Mi,1 =

⇢
s̄i 2 R3 : si �

s̈3
i

6a2
i,r
= 0, ṡi +

s̈i|s̈i|
2ai,r

= 0
�

Mi,2 = {s̄i 2 R3 : si(s̄i) = 0}

(11)

Note that, in this case, the 3-SM algorithm requires that
the discontinuous control is wi(t), which only affects s (3)

i ,
but not s̈i, so that the control actually fed into the plant is
continuous and the chattering is alleviated.

V. STABILITY ANALYSIS

With reference to the proposed 3-SM control, the following
results can be proved.

Theorem 1: In the IOM case, by applying the control
law (9) with constraints (7)-(8) and (10), the sliding variables
s1(t) and s2(t) are steered to zero in a finite time.

Now, let e= [e1, e2, e3, e4, e5, e6]T denote the state of the
error system, with e j = x j,re f � x j, j = 1, . . . ,6, x j being the
state variables of (4). By virtue of Theorem 1, the following
result can be proved.

Theorem 2: Consider system (4) in IOM and variables s1
and s2, controlled via the 3-SM algorithm in (9). 8 t � tr,
tr being the time instant when s1, ṡ1, s̈1, s2, ṡ2, s̈2 are
identically zero (i.e. the controlled system features a 3-SM),
8x(tr) 2 X , then, the origin of the error system state-space
is a finite time stable equilibrium point.

By using the 3-SM control approach, the designed control
system turns out to be naturally robust with respect to any
uncertainty included in ji(·), i = 1,2, while guaranteeing
some beneficial effects in terms of chattering alleviation.
It is also worth analyzing the robustness of the 3-SM
control approach with respect to matched disturbances or
uncertainties, i.e. captured by the signal udV SC(t) which acts on
the same channel of the control variable, due to the presence
of the VSC in the DGu. To this end, let us consider the
perturbed version of system (4), i.e.

ẋ(t) = Ax(t)+Bu(t)+udV SC(t) (12)

where, we assume that udV SC(t) = BhV SC(t), with

khV SC(t)k•  hV SCmax (13)

where hV SCmax is a known positive constant. Note that, the
term hV SC,i(t), hV SC,i(t) being the i-th component of vector
hV SC(t), can be included into ji in the auxiliary system. Then
ji(·) is replaced with j̄i(·), i = 1,2, with bound

|j̄i(·)| F̄i (14)

F̄i being a positive constant assumed to be known. Now, the
following result can be proved.



TABLE I
ELECTRICAL PARAMETERS OF THE DGU IN FIG. 1

Quantity Value Description

Vdc 1000 V DC voltage source
fc 10 kHz PWM carrier frequency
Rt 40 mW VSC filter resistance
Lt 10 mH VSC filter inductance
R 4.33 W Load resistance
L 100 mH Load inductance
C 1 pF Load capacity
Rs 0.1 W Grid resistance
f0 60 Hz Nominal grid frequency
Vn 120 V Nominal grid phase-voltage (RMS)

Vd,re f 169.7V d-component of voltage reference
Vq,re f 0V q-component of voltage reference

Theorem 3: System (12), controlled by applying (9), with
bounds as in (8) and (14), and the reduce control amplitude
āi,r such that

āi,r = aiGi,m � F̄i > 0 (15)

8 t � tr and 8x(tr)2X , is robust with respect to the uncertain
term hV SC.

VI. SIMULATIONS

In this section the proposed control strategy is verified and
simulation results, performed by implementing the master-
slave model of a microgrid composed of three DGus, are
discussed. When the microgrid is in IOM, various conditions,
such as unknown load dynamics, unbalanced and nonlinear
load, are considered.

The electrical parameters of the single DGu considered
in this paper (see Fig. 1) are reported in Table I, while
in Table II the 3-SM controller parameters are indicated.
Note that the chosen parameters of the single DGu are
selected in analogy with a realistic case (see for instance
[26]), while the 3-SM control parameters amplitudes have
been correctly sized , to avoid excessive conservatism, through
dominating the uncertain terms. Note that, when three DGus
are considered, we introduce an additional load, which absorbs
an active and reactive power equal to P = 25kW and Q =
1.5kvar, respectively. For all the following simulation tests
the sampling time is equal to Ts = 1⇥10�6 s.

TABLE II
3-SM PARAMETERS

Quantity Value

F̄1 4.0⇥1015

F̄2 5.0⇥1013

G1 1.0⇥108

G2 1.0⇥108

a 5⇥107

ar 1⇥1015

A. Parameter Uncertainties
In order to evaluate the robustness of the proposed control

law with respect to unknown load dynamics, consider the
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Fig. 2. From the top: instantaneous currents delivered by DGuM and
three-phase load voltage in presence of parameter uncertainties (balanced
load conditions).

islanded system balanced. Then, from t = 0.15s to t = 0.25s
a purely resistive load, which absorbs an active power of
3kW, is equally added in the three phases, such that the
resulting load is still balanced. Fig. 2 shows that during the
load variation, the DGuM increases the delivered current to
supply the added load, while keeping the load voltage equal
to its reference value despite of load parameter uncertainties.

B. Imbalances
In this case study the robustness of the proposed controller

in presence of unbalanced loads is evaluated. Consider
the islanded microgrid initially operating in balanced load
conditions, then at t = 0.15s RL loads are added, such
that the resulting load becomes unbalanced. The relative
values of the additional loads with respect to the nominal
three-phase parallel RLC load are given in Table III. Fig. 3
shows that the VSC of DGuM injects unbalanced currents in
order to contain the imbalance of PCC voltage. Moreover,
in order to verify that the proposed controllers comply with
IEEE recommendations, the voltage imbalance ratio Vn/Vp,
where Vn and Vp are the magnitudes of negative and positive
sequence components of load voltage, is calculated with the
approximate formula proposed in [27]

% voltage unbalance =
82
q

v2
abe + v2

bce + v2
cae

v̄
(16)

where vabe, vbce, vcae are the difference between the line
volatges vab, vbc, vca and v̄ = (va + vb + vc)/3.

Fig. 3 shows that, when the 3-SM is applied, the voltage
imbalance ratio settles to a value approximately equal to 2.5%,
which is less than the maximum admissible value (3%) defined
by IEEE [28]. On the other hand, by using PI controllers the
imbalance ratio results almost equal to 3.9%, which is greater
than the maximum admissible value. However, the proposed 3-
SM control strategy cannot necessarily face more unbalanced
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Fig. 3. Unbalanced load conditions. From the top: instantaneous currents
delivered by DGuM ; three-phase load voltage and imbalance voltage ratio
by applying PI and 3-SM controllers.

load conditions, but it always results more performant than
the PI control. Note that the gains of PI controllers have
been tuned relying on the standard Ziegler-Nichols method
to obtain a satisfactory behavior, given the type of control,
of the controlled system.

TABLE III
UNBALANCED LOAD PARAMETERS

Phase a Phase b Phase c

R (W) 5 R 4 R 2 R
L (mH) - - L

C. Nonlinearities
In order to evaluate the robustness of the proposed control

strategy also with respect to the presence of nonlinear loads,
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Fig. 4. Nonlinear load conditions. From the top: instantaneous load currents;
three-phase load voltage and THD value by applying PI and 3-SM controllers.

consider the microgrid in IOM. Then, from t = 0.1s to t =
0.2s a three-phase six-pulse diode-bridge rectifier, feeding a
purely resistive load with R = 80W, is connected to the PCC.
In Fig. 4 the instantaneous currents fed into the nonlinear
load and the three-phase load voltage are reported, showing
the robust stability of the proposed controller in spite of
the nonlinearities due to the rectifier. Furthermore, in order
to verify that the proposed controllers comply with IEEE
recommendations, the Total Harmonic Distortion (THD) has
been calculated. Fig. 4 shows that, when the 3-SM is applied,
the THD settles to a value approximately equal to 1% in both
transient and steady state conditions, which is less than the
maximum permissible value (5%) recommended by IEEE [28].
On the other hand, by using PI controllers, the THD reaches
values greater than the maximum permissible during transients.
Yet, the proposed 3-SM control strategy cannot necessarily
face highly nonlinear load conditions, but it always results
more performant than the PI control, during transients.

D. Comparative Analysis
In this section the tracking performance of 3-SM and PI

control is evaluated. In Fig. 5 the error of the load voltage,
under unbalanced load conditions is shown and the 3-SM
results in being resolutely better. Then, in order to make an
objective comparative analysis between the different behaviors
of the controlled system, we use the Root Mean Square (RMS)
value, calculated as

eRMS =

s
1
N

N

Â
k=1

e2
k

where ek is the k-th element of the controlled variable error
vector, i.e. the sliding variables s1, s2.

In Table IV we report the root mean square errors
(expressed in %) of the controlled variable Vd and Vq
under different conditions, including parameter uncertainties,
imbalances and nonlinearities, respectively. The error is
evaluated when the microgrid is in IOM by applying PI
and 3-SM control.

TABLE IV
RMS VALUES OF VOLTAGES ERROR

Case PI 3-SM

Standard 100% 21.3%
Balanced 100% 21.9%

Unbalanced 100% 23.3%
Nonlinear 100% 27.2%

Finally, in Table V the zero crossings number (expressed
in %) of the sliding variables s1 and s2 are indicated. The
results show that the 3-SM control strategy is better than
the fSOSM one in terms of chattering alleviation in all the
studied cases: standard, balanced, unbalanced, and nonlinear
load conditions.

VII. CONCLUSIONS

In this paper a third order sliding mode control strategy for
microgrid in islanded operation mode has been proposed. By
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Fig. 5. Tracking performance evaluation of 3-SM and PI control, comparing
the direct and quadrature components error of the load voltages, under
unbalanced load conditions.

TABLE V
ZERO CROSSINGS OF SLIDING VARIABLES

Case fSOSM 3-SM

Standard 100% 89.8%
Balanced 100% 91.1%

Unbalanced 100% 88.7%
Nonlinear 100% 85.9%

virtue of the fact that the natural relative degree of the system
is equal to 2, significant beneficial effect can be obtained in
term of robustness and chattering alleviation. The stability
analysis has been carried out, and satisfactory performances
have been obtained in simulation relying on a three degree-
of-freedoms microgrid with master-slave architecture. The
proposed 3-SM control strategy ensures closed-loop perfor-
mance complying with the IEEE recommendations for power
systems and results in being more robust than traditional PI
control, as well as more effective in reducing chattering than
a SOSM control law made continuous by suitable filtering.
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