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Abstract— The present paper deals with the design of a

decentralized control scheme that relies on advanced control

strategies of Sliding Mode (SM) type to regulate the voltage

in islanded Direct Current (DC) microgrids. More specifically,

the model of an islanded DC microgrid composed of several

Distributed Generation units (DGus) interconnected according

to an arbitrary topology including loops, is presented. The

model takes into account the power lines dynamics and is

affected by unknown load demand and unavoidable modelling

uncertainties. First, a Second Order Sliding Mode (SOSM)

control algorithm, belonging to the class of Suboptimal SOSM

control, is proposed to solve the voltage control problem. Then,

in order to obtain a continuous control signal that can be used

as duty cycle of the power converter, a third order Sliding Mode

(3-SM) control strategy is presented.

I. INTRODUCTION

In the last decades economic, technological and envi-
ronmental issues have encouraged the modification of the
electricity generation and transmission towards smaller and
Distributed Generation units (DGus). The increasing pene-
tration of the Renewable Energy Sources (RES), such as
photovoltaic panels or wind turbines, characterized by un-
predictable generation, creates a new challenge for operating
and controlling the power network safely and efficiently.
This challenge can be addressed by exploiting the concept
of “microgrids”, which are clusters of DGus, loads and
storage systems interconnected through power lines [1].
Moreover, they can operate disconnected from the main grid
autonomously, in the so-called islanded operation mode [2].

In this context, due to the widespread use of Alternate
Current (AC) electricity in most industrial, commercial and
residential applications, the research mainly focused on AC
microgrids (see e.g. [3]–[8] and the references there in).
However, the development in power electronics technology,
which enables DC voltage transformation into different lev-
els, and the increasing number of DC loads and applications
(e.g. electronic appliances and electric vehicles) in several
fields (e.g. automotive, marine, avionics [9]), are moving
the interest towards DC microgrids. Indeed, several factors
favour the use of DC-based power systems. Foremost, DC
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distribution systems are more efficient than AC distribu-
tion [10].

In the literature, the voltage control problem in DC mi-
crogrids has been treated and solved with different control
approaches. In [11] a droop controller is proposed to regulate
the microgrid voltage in order to achieve load sharing. A
fuzzy control strategy is designed in [12], while [13] pro-
poses fuzzy methodology with gain-scheduling techniques
to accomplish both power sharing and energy management.
Instead in [14] a model predictive control-based Maximum
Power Point Tracking and droop current controller are de-
signed in order to interface photovoltaic panels in smart DC
distribution systems.

In this paper an islanded DC microgrid with DGus in-
terconnected according to an arbitrary complex and meshed
topology including loops is considered, and each DGu is
interfaced with the network through a DC-DC Buck con-
verter. The power network is represented by a connected and
undirected graph, and the model, that takes into account the
power lines dynamics, is affected by unknown load demand
and unavoidable modelling uncertainties.

In order to solve the aforementioned voltage control
problem, Sliding Mode (SM) control methodology is ap-
plied. SM control belongs to the class of Variable Structure
Control Systems so that it seems perfectly adequate to
control the variable structure nature of DC-DC converters
[15]. Moreover, SM control is very appreciated for its
robustness properties against a wide class of unavoidable
modelling uncertainties and external disturbances [16], [17].
In particular, we first propose a second order sliding mode
control algorithm belonging to the class of Suboptimal
SOSM (SSOSM) control [18]. However, this solution allows
the switching frequency of the Buck converter to be not
constant and not a priori fixed. So, the switching frequency
could be very high, implying the increase of the power losses.
Then, in order to avoid this problem and obtain a continuous
control signal that can be used as duty cycle of the Buck
converter switch, a third order Sliding Mode (3-SM) control
[19] is proposed. Both the proposed solutions are very
easy to implement, since the sliding variable uses only the
measurement of the load voltage locally, so that the control
approach is decentralized. Finally, the proposed solutions are
theoretically analyzed and assessed in simulation, proving the
asymptotic stability of the whole microgrid.

The present paper is organized as follows. In Section II
the microgrid model is presented and the control problem
is formulated, while in Section III the control strategies
are proposed. In Section IV the stability properties of the
controlled system are analyzed, while in Section V the simu-
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Fig. 1. The considered electrical diagram of a typical DC microgrid composed of two DGUs.

lation results are illustrated and discussed. Some conclusions
are finally gathered in Section VI.

II. PROBLEM FORMULATION

Consider the schematic electrical diagram of a typical
microgrid composed of two DGus in Fig. 1. The renewable
energy source of a DGu is represented by a DC voltage
source VDC, and it is interfaced with the electric DC network
through a DC-DC Buck converter that supplies a DC local
load. The local DC load is connected to the so-called Point of
Common Coupling (PCC) and it can be treated as a current
disturbance W . At the output of the Buck converter a low-
pass filter RtLtCt is considered, where Rt represents the
filter parasitic resistance. Moreover, the DGui can exchange
power with the DGuj through the resistive-inductive line
RijLij .

The network is represented by a connected and undirected
graph G = (V, E), where the nodes V = {1, ..., n}, repre-
sent the DGus and the edges E ⇢ V ⇥ V = {1, ...,m},
represent the distribution lines interconnecting the DGus.
First, consider the scheme reported in Figure 1. By applying
the Kirchhoff’s current (KCL) and voltage (KVL) laws,
the governing dynamic equations1 of the i-th node are the
following

d
dtIti = �Rti

Lti
Iti � 1

Lti
Vi +

1
Lti

Ui

d
dtVi = 1

Cti
Iti � 1

Cti
Wi � 1

Cti

X

j2Ni

Iij ,
(1)

where Ni is the set of nodes (i.e., DGus) connected to the
i-th node by distribution lines. Moreover, for each j 2 Ni,
the line dynamics can be expressed as

d
dtIij = 1

Lij
(Vi � Vj)� Rij

Lij
Iij . (2)

Now, the network topology can be represented by its
corresponding incidence matrix D 2 Rn⇥m. The ends of
edge k are arbitrary labeled with a ‘+’ and a ‘-’. More
precisely, one has that

Dik =

8
><

>:

+1 if Ik entering into DGui is assumed positive
�1 if Ik exiting from DGui is assumed positive
0 if k is not connected to i,

1For the sake of simplicity, the dependence of all the variables on time
t is omitted throughout the paper.

Ik = Iij being the current exchanged through the edge k
(i.e., the distribution line RijLij ) of the graph G.

To study the overall microgrid we write system (1) and
the distribution lines dynamics in (2) compactly for all nodes
i 2 V as

d
dtIt = �L�1

t RtIt � L�1
t V + L�1

t U

d
dtV = C�1

t It + C�1
t DI � C�1

t W

d
dtI = �L�1DTV � L�1RI,

(3)

where V 2 Rn, It 2 Rn, W 2 Rn, I 2 Rm, and
U 2 Rn represent, respectively, the following signals: the
load voltages, the currents generated by the DGus, the
unknown currents demanded by the loads, the currents along
the interconnecting lines, and the Buck converters output
voltages. Moreover Ct, Lt and Rt are n ⇥ n diagonal
matrices, while L and R are m ⇥ m diagonal matrices,
e.g. Rt = diag{Rt1 , . . . , Rtn} and R = diag{R1, . . . , Rm},
with Rk = Rij . In the following we use x[S] to denote the
vector [S1, . . . , Sn]T with S 2 {V, It}, and x[I] to denote
the vector [I1, . . . , Im]T , with Ik = Iij .

Now, system (3) can be written in the state-space repre-
sentation, i.e.,

ẋ[It] = �L�1
t Rtx[It] � L�1

t x[V ] + L�1
t u

ẋ[V ] = C�1
t x[It] + C�1

t Dx[I] � C�1
t w

ẋ[I] = �L�1DTx[V ] � L�1Rx[I]

y = x[V ],

(4)

where x =
h
xT
[It]

xT
[V ] x

T
[I]

iT
2 R2n+m is the state variables

vector, u = U 2 Rn is the control variables vector, w =
W 2 Rn is the disturbances vector, and y = x[V ] 2 Rn

is the controlled variables vector. Then, the previous system
can be written as

ẋ = Ax+Bu+Bww
y = Cx,

(5)

where A 2 R(2n+m)⇥(2n+m) is the dynamics matrix of
the microgrid, B 2 R(2n+m)⇥n, and Bw 2 R(2n+m)⇥n,
and C 2 Rn⇥(2n+m). To permit the controller design,



the following assumption is required on the state and the
disturbance.

Assumption 1 The load voltage Vi is locally available at
DGui. The disturbance Wi is unknown but bounded, of class
C2, with bounded first and second time derivatives.

Now we are in a position to formulate the control problem:
Let Assumption 1 hold. Given system (1)-(5), design a
decentralized control scheme capable of guaranteeing that
the tracking error between any controlled variable and the
corresponding reference is steered to zero in a finite time
in spite of the uncertainties, such that the overall system is
asymptotically stable.

III. THE PROPOSED SLIDING MODE CONTROL SCHEMES

In this section, the SSOSM and 3-SM control are proposed
to solve the aforementioned voltage control problem.

A. Suboptimal SOSM Controller
Consider the state-space model (5) and select the sliding

variables vector as

� = y � y?, (6)

where � 2 Rn, and y? = x?
[V ] 2 Rn is the vector of reference

values, such that the following assumption is verified.

Assumption 2 Let the references y?i , i = 1, . . . , n, be of
class C3, with first and second time derivatives Lipschitz
continuous.

Moreover, with reference to (6), it appears that the relative
degree2 is equal to 2, so that a SOSM control naturally
applies [18], [20]. According to the SOSM control theory,
the auxiliary variables vectors ⇠1 = � and ⇠2 = �̇ have to
be defined and the corresponding auxiliary system can be
expressed as

⇠̇1 = ⇠2
⇠̇2 = f + gu,

(7)

where ⇠2 is not measurable since, according to Assumption
1, w is unknown. More specifically, one has that

f = �C�1
t (L�1

t +DL�1DT )x[V ]

�C�1
t L�1

t Rtx[It] � C�1
t DL�1Rx[I]

�C�1
t ẇ � ẍ?

[V ]

g = C�1
t L�1

t ,

(8)

where f 2 Rn, g 2 Rn⇥n are uncertain but bounded, i.e.,

|fi|  Fi, Gmini  gii  Gmaxi , i = 1, . . . , n, (9)

Fi, Gmini and Gmaxi being known positive constants. The
i-th control law, which is used to steer ⇠1i and ⇠2i , i =

2The relative degree is the minimum order r of the time derivative
�
(r)
i , i = 1, . . . , n, of the sliding variable associated to the i-th node in

which the control ui, i = 1, . . . , n, explicitly appears.

1, . . . , n, to zero in a finite time in spite of the uncertainties,
in analogy with [18], can be expressed as follows

ui = �↵iUmaxi sgn
�
⇠1i � 1

2⇠1maxi

�
, (10)

with bounds

Umaxi > max

✓
Fi

↵⇤
iGmini

;
4Fi

3Gmini � ↵⇤
iGmaxi

◆
(11)

↵⇤
i 2 (0, 1] \

✓
0,

3Gmini

Gmaxi

◆
. (12)

Remark 1 Note that, in real applications, the discontin-
uous control can be directly used to open and close
the switch of the Buck converter. More precisely, when
in (10) sgn

�
⇠1i � 1

2⇠1maxi

�
= �1, the switch is closed

and the Buck output voltage is VDCi . Otherwise, when
sgn

�
⇠1i � 1

2⇠1maxi

�
= 1, the switch is open and the Buck

output voltage is zero. However, the IGBTs (Insulated Gate
Bipolar Transistor) switching frequency is not constant and
cannot be fixed. Indeed, the switching frequency could be
very high, implying the increase of the power losses.

B. 3-SM Controller
Usually, to control Buck converters, the Pulse Width Mod-

ulation (PWM) technique with constant switching frequency
is used. To do this, a continuous control signal that represents
the duty cycle of the switch of the Buck converter is required.
In order to obtain a continuous control signal, as suggested in
[20], the system relative degree can be artificially increased.
Therefore, by defining the auxiliary variables vectors ⇠1 = �,
⇠2 = �̇ and ⇠3 = �̈, the auxiliary system can be expressed
as

⇠̇1 = ⇠2
⇠̇2 = ⇠3
⇠̇3 = '+ �h
u̇ = h,

(13)

where ⇠2 and ⇠3 are unmeasurable and

' = +C�1
t (L�2

t Rt +DL�2RDT )x[V ]

+C�1
t (L�2

t R2
t � (L�1

t +DL�1DT )C�1
t )x[It]

+C�1
t (DL�2R2 � (L�1

t +DL�1DT )C�1
t D)x[I]

�C�1
t L�2

t Rtu+ C�1
t (L�1

t +DL�1DT )C�1
t w

�C�1
t ẅ � x?(3)

[V ]

� = C�1
t L�1

t

(14)

are uncertain with bounds

|'i|  �i, �mini  �ii  �maxi , i = 1, . . . , n, (15)

�i, �mini and �maxi being known positive constants.
Now, the third order Sliding Mode (3-SM) control law

proposed in [19] can be used to steer ⇠1i , ⇠2i and ⇠3i , i =



1, . . . , n, to zero in a finite time in spite of the uncertainties,
i.e.,

hi = �↵i

8
><

>:

h1i = sgn(�̈i) �̄i 2 M1i/M0i

h2i = sgn
⇣
�̇i +

�̈2
i h1i
2↵ri

⌘
�̄i 2 M2i/M1i

h3i = sgn(si(�̄i)) else,
(16)

with �̄i = [�i, �̇i, �̈i]T and

si(�̄i) = �i+
�̈3
i

3↵2
ri

+h2i


1

p
↵ri

✓
h2i �̇i+

�̈2
i

2↵ri

◆ 3
2

+
�̇i�̈i

↵ri

�
,

with

↵ri = ↵i�mini � �i > 0. (17)

In (16) the manifolds M1i , M2i , M3i are defined as

M0i =
�
�̄i 2 R3 : �i = �̇i = �̈i = 0

 

M1i =
�
�̄i 2 R3 : �i � �̈3

i
6↵2

ri

= 0, �̇i +
�̈i|�̈i|
2↵ri

= 0
 

M2i =
�
�̄i 2 R3 : si(�̄i) = 0

 
.

(18)

Note that the control signal hi = u̇i is discontinuous and
affects only �(3)

i , while the control actually fed into the plant
ui is continuous. Then, in real applications it can be used as
duty cycle of the switch of the i-th Buck converter.

From (16), one can also observe that the controller of
DGui requires not only �i, but also �̇i and �̈i. Yet, according
to Assumption 1, only the load voltage Vi is measurable
at DGui. Then, one can rely on Levant’s second-order
differentiator [21] to retrieve �̇i and �̈i in a finite time. With
reference to system (13), for i = 1, . . . , n, one has

˙̂⇠1i = ��0i

���⇠̂1i � ⇠1i

���
2
3
sgn

⇣
⇠̂1i � ⇠1i

⌘
+ ⇠̂2i

˙̂⇠2i = ��1i

���⇠̂2i �
˙̂⇠1i

���
1
2

sgn
⇣
⇠̂2i �

˙̂⇠1i

⌘
+ ⇠̂3i

˙̂⇠3i = ��2i sgn
⇣
⇠̂3i �

˙̂⇠2i

⌘
,

(19)

where ⇠̂1i , ⇠̂2i , ⇠̂3i are the estimated values of ⇠1i , ⇠2i , ⇠3i ,
respectively, and �0i = 3⇤1/3

i , �1i = 1.5⇤1/2
i , �2i =

1.1⇤i, ⇤i > 0, is a possible choice of the differentiator
parameters suggested in [21].

IV. STABILITY ANALYSIS

With reference to the proposed Higher Order SM (HOSM)
control approaches, the following results can be proved. For
the sake of brevity the corresponding proofs are omitted.

Lemma 1 Given the auxiliary system (7), by applying the
SSOSM Algorithm (10)-(12), the sliding variables �i and
their first time derivatives �̇i, i = 1, . . . , n, are steered to
zero in a finite time, in spite of the uncertainties.

Let x̃ be the error given by the difference between the state
and the equilibrium point associated to the reference y? when

w is constant. Therefore, 8 t � tr, the error system can be
expressed as

˙̃x = Ax̃+Bũeq. (20)

Now, relying on Lemma 1, one can prove the major result
concerning the evolution of the considered DC microgrid
controlled via the proposed decentralized control scheme.

Theorem 1 Consider system (1)-(5) and the sliding variable
(6) controlled via the SSOSM Algorithm (10)-(12). Given a
constant reference y? and a constant disturbance w, 8 t � tr,
8x(tr) 2 R2n+m, the origin of the error system (20) is a
robust asymptotically stable equilibrium point.

Now, with reference to the proposed 3-SM control law, the
following results can be proved.

Lemma 2 Given the auxiliary system (13), assume t0 � tLd,
t0, tLd being the initial time instant and the finite time neces-
sary for the Levant’s differentiator convergence, respectively.
By applying the 3-SM control law (16)-(18), the sliding
variables �i and their first and second time derivatives
�̇i, �̈i, i = 1, . . . , n, are steered to zero in a finite time
tr � t0, in spite of the uncertainties.

Theorem 2 Consider system (1)-(5) and the sliding variable
(6) controlled via the 3-SM control law (16)-(18). Given
a constant reference y? and a constant disturbance w,
8 t � tr � t0 � tLd, 8x(tr) 2 R2n+m, the origin of the er-
ror system (20) is a robust asymptotically stable equilibrium
point.

V. SIMULATION RESULTS

In this section, the proposed decentralized control scheme
is assessed in simulation by implementing the realistic model
of a DC islanded microgrid composed of 5 DGus (n =5)
with meshed topology (m =7), as depicted in Figure 2. The
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Fig. 2. Scheme of the considered DC microgrid composed of 5 DGus.
The arrows indicate the positive direction of the currents through the power
network.
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Fig. 3. Load currents treated as disturbances.
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Fig. 4. Load voltages in the presence of disturbance and reference
variations.
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Fig. 5. The currents through the distribution lines.

TABLE I
BUCK FILTER PARAMETERS

Rt [⌦] Lt [mH] Ct [mF]

DGu1 0.2 1.8 2
DGu2 0.1 1.6 2.1
DGu3 0.3 2 1.8
DGu4 0.4 2.1 1.9
DGu5 0.5 1.9 2.2

TABLE II
LINE PARAMETERS

R [m⌦] L [µH]

Line12 50 1.9
Line14 60 2
Line23 40 1.7
Line24 80 2.1
Line34 70 1.8
Line45 65 1.6
Line51 45 2

TABLE III
INITIAL VALUES AND VARIATIONS OF LOADS AND REFERENCES

Wi [A] t [s] �Wi [A] V ?
i [V] t [s] �V ?

i [V]

DGu1 20 0.5 -10 380 0.2 +0.5
DGu2 10 0.6 +10 380 - -
DGu3 15 0.7 +15 380 0.3 -0.5
DGu4 30 0.8 -15 380 - -
DGu5 5 0.7 +20 380 0.4 -0.5
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Fig. 6. Generated currents (at the output of the LtCt filter).



incidence matrix D 2 R5⇥7, which describes the network
topology, can be expressed as

D =

2

66664

�1 �1 0 0 0 0 1
1 0 �1 �1 0 0 0
0 0 1 0 �1 0 0
0 1 0 1 1 �1 0
0 0 0 0 0 1 �1

3

77775

The electrical parameters of the output filters of the Buck
converters are reported in Table I, while the parameters of
the interconnecting distribution lines are reported in Table II.
The performances of the proposed decentralized control
scheme are validated considering unknown load dynamics
and voltage reference changes. All the variations are reported
in Table III and they are such that Assumptions 1 and 2 hold.

For the sake of brevity, we show only the simulation
results obtained by applying the 3-SM control law. Simi-
lar results can be obtained by using the SSOSM control
algorithm, yet, in that case, a higher switching frequency
is required. In Figure 3 the time evolution of the load
currents are reported, while in Figure 4 the load voltages
are shown. In Figure 4 one can observe the robustness of
the proposed decentralized control approach with respect to
both reference and load variations. Moreover, the voltage
dynamics of each DGu is not affected neither by load nor
by reference variations in the neighbouring DGus. In Figure
5 the time evolution of the currents flowing through the
distribution lines interconnecting the DGus is illustrated. In
particular, one can observe that there is current exchange
when two adjacent DGus have different PCC voltage values.
Finally Figure 6 shows the time evolution of the currents
generated by each DGu (at the output of the LtCt filter).

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper a decentralized control scheme based on
Higher Order Sliding Mode control strategies is designed to
regulate the voltage in islanded DC microgrids with arbitrary
complex topology. A DC microgrid composed of several
interconnected Distributed Generation Units, power lines and
loads is modelled, and the power network is represented by
a connected and undirected graph. In particular, SOSM and
3-SM control strategies are used to stabilize the microgrid
voltage in spite of unavoidable modelling uncertainties and
unknown load dynamics. The chattering alleviation per-
formed by the 3-SM control algorithm allows one to obtain a
continuous control signal that can be used in PWM technique
as duty cycle of the switch of the Buck converter in order
to attain a constant switching frequency. The asymptotic
stability of the whole system is proved, and the performance
of the proposed decentralized control approach is evaluated
in simulation considering a DC microgrid composed of five
DGus arranged in a meshed topology including loops.

An interesting extension to the presented work could be the
design of a distributed networked control scheme in order
to obtain power sharing among the DGus, even by using
event-triggered sliding mode methodology [22].
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