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Distributed control of DC grids: a social perspective
M. Cucuzzella, K. C. Kosaraju, T. Bouman, G. Schuitema, S. Johnson-Zawadzki, C. Fischione, L. Steg, J. M. A.
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Abstract—In this paper, a novel distributed control strategy
addressing a (feasible) social-physical welfare problem in Direct
Current (DC) smart grids is proposed, which is based on physical,
technical and social aspects of the grid. Firstly, we formulate a
(convex) optimization problem that allows prosumers to share
power – and the financial and psycho-social costs and benefits
associated with the generation and consumption of power – with
each other, taking into account the technical, physical and social
aspects and constraints of the grid (e.g., stability, safety, user
preferences). Secondly, we design a controller whose (unforced)
dynamics represent the continuous time primal-dual dynamics
of the considered optimization problem. Thirdly, a passive
interconnection between the physical grid and the controller
is presented. Global asymptotic convergence of the closed-loop
system to the desired steady-state is proved and simulations
illustrate and confirm the theoretical results.

Index Terms—Distributed control, DC power systems, Social
factors.

I. INTRODUCTION

TRANSITIONING towards 100% renewable energy sys-
tems brings about many challenges, requiring solutions

that consider physical, technical as well as social aspects of en-
ergy systems . Even if renewable energy technologies are able
to deliver the energy demanded, changes in end-users energy-
related choices, roles and behaviors are needed to guarantee
the efficiency and sustainability of the energy system. For
instance, the generation (e.g., photovoltaic technology, wind
turbines) and storage (e.g., home batteries, electric vehicles) of
power at household level is far more efficient and sustainable
if prosumers share and cooperate within the (local) energy sys-
tem, limiting the excess of generated energy, preventing risks
associated with single suppliers, and reducing financial and
environmental costs related to the production and installation
of these technologies [1].

In the current paper, we focus on the optimization of
current-sharing, the situation in which prosumers fairly share
their generated current or stored energy from renewable
sources with peers within their local electricity network.
Importantly, given the central role of end-users in renewable
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energy systems, we not only look at the commonly consid-
ered technical and physical aspects of energy systems when
designing the control scheme, but also pioneer with integrating
social aspects in our energy models. Through this approach,
we provide first insights in, and promote and facilitate, the so
needed integration of more social aspects in the modeling and
optimization of energy systems (e.g., [2], [3]).

From a technical perspective, the recent wide spread of
renewable energy sources motivates the design and operation
of Direct Current (DC) smart grids [4], [5], [6], [7], [8],
which are interconnected clusters of prosumers interacting
with each other through distributed transmission lines . To
guarantee a proper and safe functioning of the power network,
voltage stabilization is the main goal to achieve in DC smart
grids [9]. Additionally, to avoid the overstressing of a single
energy source, it is generally desired that the total demand
is shared in a fair way among all the prosumers of the
smart grid [1]. However, to permit prosumers to share their
generated current or power, voltage differences among the
nodes of the smart grid are necessary. As a consequence, it is
generally not possible to achieve the aforementioned objectives
simultaneously.

In the literature, several control techniques have been
proposed to control the voltages towards the corresponding
nominal values (see for instance [10] and the references
therein). Other works have proposed consensus-based control
schemes achieving current/power sharing without regulating
the voltage (see for instance [11] and the references therein).
Differently from the above mentioned works, consensus-based
protocols have been recently designed for achieving both
current sharing and a peculiar form of voltage regulation,
where the average value of the voltages of the whole microgrid
is controlled towards a desired setpoint (see for instance [1],
[12] and the references therein). However, regulating only the
average voltage may introduce, in some nodes of the micro-
grid, large voltage deviations from the corresponding nominal
value, making this solution not always adequate in practical
applications. This motivated us to design an optimal control
scheme aiming to share, among the prosumers of the smart
grid, the largest possible amount of the (controllable) total
demand in compliance with physical constraints that ensure
safety and reliability (a similar control problem is addressed in
[13] by synthesizing a centralized symbolic controller), while
considering social aspects of the involved prosumers as well.

Critically, the extent to which prosumers accept such solu-
tions, and are thus willing to share power and (controllable)
demand, strongly depends on these prosumers’ personal pref-
erences and motives. Specifically, research in social sciences
identified four key values (i.e., general life goals that motivate
and steer individuals’ behaviours) that are particularly relevant
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in guiding individuals’ energy behaviours and choices [14],
[15], [16], [17], [18]. These values relate to caring about
the environment (i.e., biospheric values), equality and social
welfare (i.e., altruistic values), acquiring money, status and
possessions (i.e., egoistic values), and acquiring pleasure and
comfort (i.e., hedonic values). Typically, individuals endorse
all these values to some extent, but differ in how strongly
they endorse and prioritize each value, which robustly guide
and predict their behaviours and choices. More specifically,
individuals are more likely to engage in actions that benefit
more prioritized values, and are more likely to refrain from
actions that have costs for more prioritized values, and this
logic we will incorporate in our models (see Subsection III-D).

More concretely, in this paper, we consider a DC smart grid
with a number of prosumers interconnected through resistive-
inductive transmission lines. For the considered DC smart
grid we propose a novel distributed optimal control scheme
that addresses a social-physical welfare problem and allows to
share among the prosumers financial, technical and social costs
and utilities associated with the generation and consumption
of energy, fulfilling (at the steady-state) physical requirements.

To achieve these goals we use an approach that bridges
convex optimization and systems theory, i.e., (continuous)
primal-dual dynamics [19], [20], [21] and passivity [22]. The
contributions of the paper can be summarized as follows:
(1) We formulate a (convex) social-physical welfare opti-

mization problem.
(2) We design a distributed optimal controller, whose (un-

forced) dynamics represent the primal-dual dynamics of
the considered optimization problem.

(3) After showing the passivity properties of the smart grid
and the controller, a power-conserving interconnection
between the smart grid and the controller is established
and the (global) asymptotic convergence of the closed-
loop system trajectories to the desired equilibrium point
is proved.

(4) The topology of the used communication network can
differ from the topology of the physical network.

(5) We provide a social interpretation of some parameters
of the control algorithm, focusing on key motives of
prosumers and how these relate to the proposed solutions.

The remainder of this paper is outlined as follows. In
Section II we describe the model of the considered DC smart
grid and show its passivity property. Thereafter, in Section III
we state the desired control objectives and, in Section IV we
explain the proposed control strategy. We present simulation
results in Section V and conclude with some future remarks
in Section VI.

A. Notation

The set of real numbers and non-negative real numbers are
denoted by R and R+, respectively. For a vector x ∈ Rn

and a symmetric and positive semidefinite matrix M ∈ Rn×n,
let ‖x‖M := (x>Mx)1/2. If M is the identity matrix, this
is the Euclidean norm and is denoted by ‖x‖. For symmetric
matrices P,Q ∈ Rn×n, P ≤ Q implies that Q−P is positive
semidefinite. I and 1 denote the identity matrix and ones

Rsi

Isi

Lsi

−+ usi

Vi

Iliuli

Ci

Iij
Rij Lij

Prosumer i

Load i

Line ij

Fig. 1. Electrical scheme of prosumer i ∈ V and transmission line k ∼
{i, j} ∈ E , j ∈ Ni, where Ni is the set of the prosumers connected to
prosumer i.

TABLE I
DESCRIPTION OF THE USED SYMBOLS

Symbol Description

Isi Generated current
Rsi, Lsi Filter resistance, inductance
Vi Load voltage
Ci Shunt capacitor
Ik Line current

Rk, Lk Line resistance, inductance
usi, uli Control inputs
Ili Load current

vector of appropriate dimensions, respectively, while 0 denote
the null matrix (or vector) of appropriate dimensions. Let x, u
be the state and input of the physical plant, x∗ and u∗ denote
the corresponding optimization variables. Moreover, (u, x)
and (u∗, x∗) denote the values of (u, x) and (u∗, x∗) at the
steady-state, respectively.

II. DC SMART GRID

In this paper we consider a typical DC smart grid with
n prosumers connected to each other through m resistive-
inductive (RL) transmission lines. For the readers’ conve-
nience, a schematic electrical diagram of the considered smart
grid is illustrated in Fig. 1 (see also Table I for the description
of the used symbols). Each prosumer is represented by a DC
voltage source1 supplying a controllable load Iliuli. More
precisely, given the load demand Ili of prosumer i, the
control input 0 ≤ umin

li ≤ uli ≤ 1 can reduce the demand
to Iliu

min
li , which represents the current required to supply

the base-loads of prosumer i. The overall DC smart grid is
represented by a connected and undirected graph G = (V, E),
where the nodes, V = {1, ..., n}, represent the prosumers and
the edges, E = {1, ...,m}, represent the transmission lines
interconnecting the prosumers. Therefore, the topology of the
smart grid is described by its corresponding incidence matrix
B ∈ Rn×m. The ends of edge k ∈ E are arbitrarily labeled
with a + and a −, and the entries of B are given by Bik = +1
if i is the positive end of k, Bik = −1 if i is the negative
end of k, and Bik = 0 otherwise. Consequently, the overall

1With a slight abuse of nomenclature, the considered DC voltage source
can also represent for instance the output voltage of an energy storage system.
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dynamical system describing the smart grid behavior can be
written compactly for all the prosumers i ∈ V as

Lsİs = −RsIs − V + us

Lİ = −RI − B>V
CV̇ = Is + BI − Ilul,

(1)

where Is, V, us, ul : R+ → Rn and I : R+ → Rm. Moreover,
C,Ls, Rs, Il ∈ Rn×n and R,L ∈ Rm×m are positive definite
diagonal matrices, e.g., Il = diag(Il1, . . . , Iln). Furthermore,
let x := [I>s , I

>, V >]> ∈ X ⊆ R2n+m and u := [u>s , u
>
l ]> ∈

U ⊆ R2n denote the state and input of system (1), respectively.
Then, for a given constant input u, the corresponding steady
state solution (Is, I, V ) to system (1) satisfies

V = −RsĪs + us (2a)

I = −R−1B>V (2b)

Is = −BI + Ilul. (2c)

Before establishing a useful property of system (1), we first
define the set of all feasible forced equilibria of (1) as follows:

E := {(u, x) ∈ U × X|(u, x) satisfies (2)}. (3)

Moreover, we observe that for any u = u, the steady-state
solution x to (1) is unique and satisfies

V = (I+RsL)−1 (us −RsIlul)

Is = L(I+RsL)−1 (us −RsIlul) + Ilul

I = −R−1B>(I+RsL)−1 (us −RsIlul) ,

(4)

where L := BR−1B> is the (weighted) Laplacian matrix
associated with the physical network.

Now, in analogy with [23], we establish a passivity property
of system (1) that will be useful in Section IV for the controller
design.

Proposition 1: (Passivity property of (1)). Let y :=
[İ>s ,−V̇ >Il]> and ud := [u>sd, u

>
ld]>, usd, uld : R+ → Rn.

The following statements hold:
(a) System (1) together with u̇ = ud is passive with respect

to the supply rate u>d y and storage function

S(u, x) =
1

2
ẋ>Mẋ, (5)

with M := diag{Ls, L, C}.
(b) Let ud = 0. System (1) converges to the equilibrium

point (u, x) ∈ E.
Proof: The storage function S in (5) satisfies

Ṡ = −İ>s Rsİs − İ>Rİ + u>sdİs − u>ldIlV̇
≤ u>sdİs − u>ldIlV̇

(6)

along the solutions to (1), concluding the proof of part (a).
For part (b), we conclude from (6) that there exists a forward
invariant set Ω and by LaSalle’s invariance principle the
solutions that start in Ω converge to the largest invariant set
contained in

Ω ∩
{

(u, x) ∈ U × X|u̇ = 0, İs = 0, İ = 0
}
. (7)

Moreover, from the first line of (1) it follows that V is also
a constant vector in Ω. Then, the solutions that start in Ω
converge to the largest invariant set contained in Ω ∩ E,
concluding the proof of part (b).

III. PROBLEM FORMULATION

In this section, we first introduce an auxiliary (or virtual)
state variable that permits to use a communication network
whose topology can differ from the one of the electric network.
Then, we formulate and discuss the main goal of the paper,
which allows to share among the prosumers of the smart grid
the financial, technical and social costs and utilities associated
with the generation and consumption of energy.

Firstly, we notice that (2) implies the following equalities:

0 = us −RsĪs − V , (8a)

0 = 1>
(
Is − Ilul

)
. (8b)

Secondly, we observe that the incidence matrix B satisfies
1>B = 0, where 1 ∈ Rn is the vector consisting of all ones.
Therefore, (Is, ul) is a solution to (8b) if and only if there
exists v : R+ → Rn satisfying

− Ilul + Is − Lcv = 0, (9)

where Lc = BcΓB>c denotes the (weighted) Laplacian matrix
associated with a connected and undirected communication
graph Gc = (V, Ec), Ec = {1, ...,mc} being the set (possibly
different from E) of the communication links between the
prosumers of the smart grid. Moreover, Bc ∈ Rn×mc is
the corresponding incidence matrix (defined analogously to
B), and Γ ∈ Rmc×mc is a positive definite diagonal matrix
describing the weights on the mc edges.

Now, let xa := [I>s , V
>, v>]> ∈ Xa ⊆ R3n. Then, let us

define the following set2:

Ea := {(u, xa) ∈ U × Xa|(u, xa) satisfies (8a), (9)}, (10)

which we will use as set of equality constraints of the
optimization problem we formulate later in this section.

A. Prosumer’s cost and utility
We observe that (8b) implies that at the steady-state the total

generated current 1>Is is equal to the total current demand
1>Ilul. Therefore, there is flexibility to distribute the total
required current optimally among the various (equivalent) pro-
sumers. Generally, in order to achieve an efficient demand and
supply matching, so avoiding the overstressing of a source, it is
desirable that the total load demand of the smart grid is shared
among all the prosumers proportionally to the corresponding
generation (and/or storage) capacities (fair current sharing).
This desire is equivalent to achieving πciIsi = πcjIsj for
all i, j ∈ V , where a relatively small value of πci ∈ R+

corresponds for instance to a relatively large generation (and/or
storage) capacity of prosumer i. We call this desire ideal
current sharing and, in analogy with [12], can be expressed
as follows:

lim
t→∞

Is(t) = Is = Π−1c 1is, (11)

with Πc = diag(πc1, . . . , πcn) and is = 1>Ilul/(1
>Π−1c 1).

Moreover, a transition towards 100% renewable energy sys-
tems requires that end-users change their energy-related be-
haviours and accept new technologies such as demand re-
sponse, which controls the prosumers’ appliances. Therefore,

2Note that (u, Is, V , v) ∈ Ea ⇐⇒ (u, Is,−R−1B>V , V ) ∈ E.
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to make the notion of optimality explicit, we assign to every
prosumer i a strictly convex quadratic ‘cost’ function Ci(Isi)
related to the generated current Isi and a strictly concave
quadratic ‘utility’ function Ui(uli) related to the current con-
sumption Iliuli, i.e.,

Ci(Isi) =
1

2
πciI

2
si ∀i ∈ V, (12a)

Ui(uli) = −1

2
πuiI

2
li (1− uli)2 ∀i ∈ V, (12b)

where a relatively large value of πui ∈ R+,∀i ∈ V corre-
sponds for instance to a relatively large request of comfort
from prosumer i. Note that in Subsection III-D we also provide
a social interpretation of the coefficients πci and πui appearing
in the cost and utility functions, respectively.

B. Social-physical welfare

Let C(Is) :=
∑

i∈V Ci(Isi) and U(ul) :=
∑

i∈V Ui(uli).
Then, we denote the social welfare by W (ul, Is) := U(ul)−
C(Is) and consider the following convex minimization prob-
lem:

min
u∗,x∗

a

−W (u∗l , I
∗
s )

s.t. (u∗, x∗a) ∈ Ea.
(13)

Considering the Lagrangian function associated with the op-
timization problem (13) and manipulating the first-order opti-
mality conditions leads to the following lemma, which makes
the solution to (13) explicit:

Lemma 1: (Optimal social welfare). The solution to (13)
satisfies

I
∗
s = Π−1c 1λopt (14a)

Ilu
∗
l =

(
Il − λoptΠ−1u

)
1, (14b)

where

λopt =
1>Il1

1>
(
Π−1c + Π−1u

)
1
, (15)

with Πu = diag(πu1, . . . , πun).
Moreover, note that (14a) implies indeed that ideal current
sharing is achieved (see (11)).

Now, we assume that at the PCC of each prosumer i ∈ V ,
there exists a desired voltage:

Assumption 1: (Desired voltages). There exists a desired
voltage Vdi > 0 for each i ∈ V .
However, achieving ideal current sharing, prescribes the value
of the required differences in voltages among the nodes of
the smart grid. As a consequence, it is generally not possible
to control the voltage at each node towards the correspond-
ing desired value. For this reason, the voltage requirements
are generally relaxed and, as an alternative, several control
approaches in the literature propose to regulate the average
voltage across the whole microgrid towards a global voltage
set point [1], [12], where the sources with the largest genera-
tion capacity determine the grid voltage, i.e.,

lim
t→∞

1>Π−1c V (t) = 1>Π−1c V = 1>Π−1c V ?. (16)

However, we note that achieving ideal current sharing even
preserving the average voltage of the smart grid may not

always be desired, as it may introduce, in some nodes of
the microgrid, large voltage deviations from the corresponding
desired value. Consider for instance a DC smart grid with 2
prosumers interconnected through a purely resistive transmis-
sion line, the value of which is relatively large (e.g., because
the prosumers are spatially distant). Moreover, assume that
the load demand of one of the prosumers is much higher than
the other. Then, in order to achieve ideal current sharing, the
prosumers need to share a relatively large current through the
transmission line, implying a relatively large voltage deviation
(with respect to the desired value) at the corresponding PCCs.
Consequently, a steady-state solution satisfying (11) and (16)
may be not feasible in practical applications. Therefore, in
order to address this physical issue we modify (13) as follows:

Objective 1: (Social-physical welfare).

min
u∗,x∗

a

− αW (u∗l , I
∗
s ) +

β

2
‖u∗s‖2 +

γ

2
‖V ∗ − Vd‖2 (17a)

s.t. (u∗, x∗a) ∈ Ea, (17b)

where α, β, γ ∈ R+ are design parameters.

Remark 1: (Rationale behind Objective 1). The quadratic
function in (17a) comprises three different terms concerning
(i) the social welfare, (ii) the control effort and (iii) the
voltage deviation from the corresponding desired value. As a
consequence, a solution to Objective 1, generally differs from
the solution to (13) and does not guarantee the achievement of
ideal current sharing (11). This leads to a compromise between
the social welfare and physical requirements. In order to ensure
a proper and safe functioning of the smart grid, the voltage
requirement has a priority higher than current sharing. In other
words, we are interested in a feasible solution that permits
to share among the prosumers of the smart grid the largest
possible amount of total (controllable) demand in compliance
with physical requirements.

C. Additional constraints

In this subsection, we introduce a set of additional inequality
constraints, which ensure a safer (steady-state) functioning of
the prosumers’ appliances and allow prosumer i to choose
their acceptable level of flexibility. More precisely, in order
to guarantee a proper functioning of the prosumers’ appli-
ances, it is generally required that the currents and voltages
remain within prescribed limits (see for instance [24] and the
references therein). Moreover, we observe from (4) that the
steady-state value of the electrical signals are functions of the
control inputs us, ul. Therefore, we consider in this paper the
following steady-state constraints:

Objective 2: (Source constraints).

umin
si ≤ lim

t→∞
usi(t) ≤ umax

si , (18)

where umin
si , umax

si ∈ R+ denote the minimum and maximum
permitted value of the source voltage usi, for all i ∈ V .

Objective 3: (Load constraints).

umin
li ≤ lim

t→∞
uli(t) ≤ 1, (19)
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where umin
li ∈ [0, 1) denotes the minimum permitted value of

uli, for all i ∈ V . Note also that 1/umin
li can be interpreted as

the acceptable level of flexibility of prosumer i. Indeed, umin
li

close to 0 implies that the acceptable level of flexibility of
prosumer i is high, which further implies that prosumer i is
willing to reduce is energy demand from Ili to Iliumin

li .

D. Prosumer’s cost and utility: a social interpretation

In this subsection, inspired by [14], [15], [16], [17], [18], we
provide a social interpretation of the coefficients πci and πui
appearing in the cost and utility functions (12) of prosumer
i ∈ V . Specifically, for the cost function (12a) we propose the
following choice for πci:

πci :=
πegoistic
ci

πcapacity
ci · πaltruistic

ci

∀i ∈ V, (20)

where πcapacity
ci ∈ R+ indicates the size of the generation or

storage capacity of prosumer i. Moreover, πegoistic
ci ∈ R+ indi-

cates how much prosumer i safeguards his/her own resources,
while πaltruistic

ci ∈ R+ expresses how much prosumer i cares
for fairly sharing. Analogously, for the utility function (12b)
we propose the following choice for πui:

πui :=
πhedonic
ui

πbiospheric
ui

∀i ∈ V, (21)

where πhedonic
ui ∈ R+ indicates how much prosumer i seeks

the convenience and comfort of controlling one’s load oneself,
while πbiospheric

ui ∈ R+ expresses how much prosumer i cares
about the environment.

IV. DISTRIBUTED PRIMAL-DUAL CONTROLLER

In this section we present a basic primal-dual dynamic
controller to achieve Objective 1. Note that, for the sake
of exposition and due to the page limitation, we do not
include in the following analysis the constraints discussed in
Subsection III-C, and refer the interested reader to [25] and
the references therein for the theoretical analysis in presence
of inequality constraints. Consider the social-physical welfare
(17), i.e., Objective 1, and let λa, λb : R+ → Rn denote
the Lagrange multipliers corresponding to the constraints (8a)
and (9), respectively. Moreover, let λ := [λ>a , λ

>
b ]> and

xc := [u∗>, x∗>a , λ>]> ∈ Xc ⊆ U×Xa×R2n. The Lagrangian
function corresponding to the optimization problem (17) is

L(xc) :=− αW (u∗l , I
∗
s ) +

β

2
‖u∗s‖2 +

γ

2
‖V ∗ − Vd‖2

+ λ>a (u∗s −RsI
∗
s − V ∗)

+ λ>b (−Ilu∗l + I∗s − Lcv
∗).

(22)

Consequently, the first order optimality conditions are given
by the Karush-Kuhn-Tucker (KKT) conditions, i.e.,

βu∗s + λa = 0

−αIlΠuIl (1− u∗l )− Ilλb = 0

αΠcI
∗
s −Rsλa + λb = 0

γ(V
∗ − Vd)− λa = 0

−Lcλb = 0

u∗s −RsI
∗
s − V

∗
= 0

−Ilu∗l + I
∗
s − Lcv

∗ = 0.

(23)

Moreover, we notice that the optimization problem (17) is con-
vex and the feasibility set Ea is nonempty. As a consequence,
the optimization problem satisfies the Slater’s condition and,
therefore, strong duality holds [26]. Hence, u∗s, u

∗
l , I
∗
s, V

∗
, v∗

are optimal if and only if there exist λa, λb satisfying (23).
Now, consider the following dynamic controller, designed

using the primal-dual dynamics of the optimization prob-
lem (17):

−τsu̇∗s = βu∗s + λa − νs (24a)
−τlu̇∗l = −αIlΠuIl (1− u∗l )− Ilλb − νl (24b)

−τI İ∗s = αΠcI
∗
s −Rsλa + λb (24c)

−τV V̇ ∗ = γ(V ∗ − Vd)− λa (24d)
−τv v̇∗ = −Lcλb (24e)

τaλ̇a = u∗s −RsI
∗
s − V ∗ (24f)

τbλ̇b = −Ilu∗l + I∗s − Lcv
∗, (24g)

where τs, τl, τI , τV , τv, τa, τb > 0 are design parameters and
νs, νl : R+ → Rn denote the controller input ports, which will
be used later to interconnect the controller (24) with the plant
(1). Let ν := [ν>s , ν

>
l ]>. Then, we define the forced equilibria

set of system (24) as follows:

Ec :=
{

(xc, ν) ∈ Xc × R2n|ẋc = 0
}
. (25)

Moreover, for any ν = ν, a tedious but straightforward
calculation permits to prove3 the existence and uniqueness of
the solution xc to (24). Then, we establish a passivity property
of the controller (24) that will be useful later in this section
for ensuring the stability of the closed-loop system.

Proposition 2: (Passivity property of (24)) Let y :=
[u̇∗>s , u̇∗>l ]> and νd := [ν>sd, ν

>
ld]>, νsd, νld : R+ → Rn. The

following statements hold:

(a) The primal-dual controller (24) with ν̇ = νd is passive
with respect to the supply rate ν>d yc and storage function

Sc(xc, ν) =
1

2
ẋ>c τ ẋc, (26)

with τ := blockdiag{τs, τl, τI , τV , τv, τa, τb}.
(b) Let νd = 0. The primal-dual controller (24) converges to

the equilibrium point (xc, ν) ∈ Ec.

3To prove the result we use the additional equality 1>v∗(t) = 1>v∗(0),
for all t ≥ 0, which follows from (24e).
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Proof: The storage function Sc in (26) satisfies

Ṡc = −βu̇∗>s u̇∗s − αu̇∗>l IlΠuIlu̇
∗
l − İ∗>s Rsİ

∗
s

− γV̇ ∗>V̇ ∗ + ν>sdu̇
∗
s + ν>ldu̇

∗
l

≤ ν>sdu̇∗s + ν>ldu̇
∗
l ,

(27)

along the solutions to (24), concluding the proof of part
(a). For part (b), we conclude from (27) that there exists a
forward invariant set Ω and by LaSalle’s invariance principle
the solutions that start in Ω converge to the largest invariant
set contained in

Ω ∩
{

(xc, ν) ∈ Xc × R2n|u̇∗ = 0, İ∗s = 0, V̇ ∗ = 0, ν̇ = 0
}
.

(28)
Moreover, from (24a) and (24b) it follows that λa and λb are
also constant vectors in Ω. Furthermore, from (24e) and (24g)
it follows that 1>v̇∗ = 0 and Lcv̇

∗ = 0, respectively, implying
that v∗ is also a constant vector in Ω. Then, the solutions that
start in Ω converge to the largest invariant set contained in
Ω ∩ Ec, concluding the proof of part (b).

Now, the passive dynamic controller (24) is interconnected
to the physical grid (1) by choosing u = u∗, νs = −Is and
νl = IlV . Consequently, we obtain the following closed-loop
system:

Lsİs = −RsIs − V + u∗s (29a)

Lİ = −RI − B>V (29b)

CV̇ = Is + BI − Ilu∗l (29c)
−τsu̇∗s = Is + βu∗s + λa (29d)
−τlu̇∗l = −IlV − αIlΠuIl (1− u∗l )− Ilλb (29e)

−τI İ∗s = αΠcI
∗
s −Rsλa + λb (29f)

−τV V̇ ∗ = γ (V ∗ − Vd)− λa (29g)
−τv v̇∗ = −Lcλb (29h)

τaλ̇a = u∗s −RsI
∗
s − V ∗ (29i)

τbλ̇b = −Ilu∗l + I∗s − Lcv
∗. (29j)

The set of all feasible operating points of (29) is defined as

Ecl := { (x, xc) ∈ X × Xc|
(u∗, x) ∈ E,

(
xc,−Is, IlV

)
∈ Ec}.

(30)

Remark 2: (A perhaps surprising additional penalty).
Note that the steady-state conditions of (24) represent the KKT
conditions of the optimization problem (17) with the additional
penalty −ν>s u∗s − ν>l u∗l , which becomes I

>
s us−V I>l ul after

interconnecting (24) with (1). Then, from (2) we obtain the
following expression for the additional penalty:

I
>
s us − V I>l ul = I

>
s RsIs + V

>BR−1B>V ,

which implies that also the total power losses in the filters and
transmission lines are penalized.

We can now present the main result of the paper, i.e., the
closed-loop stability.

Proposition 3: (Stability). Let Assumption 1 hold and
assume Ecl in (30) to be nonempty. The closed-loop system
(29) stabilizes to the operating point (x, xc) ∈ Ecl.

Pros. 1

Pros. 2

Pros. 4

Pros. 3

I12

I14

I23

I34

Fig. 2. Scheme of the considered smart grid with 4 prosumers (Pros.). The
solid arrows indicate the positive direction of the current flows through the
power network, while the dashed lines represent the communication network.

Proof: The storage function

Scl(x, xc) := S(u∗, x) + Sc(xc,−Is, IlV ) (31)

satisfies

Ṡcl =− İ>s Rsİs − İ>Rİ − βu̇∗>s u̇∗s

− αu̇∗>l IlΠuIlu̇
∗
l − İ∗>s Rsİ

∗
s − γV̇ ∗>V̇ ∗

(32)

along the solutions to the closed-loop system (29). Therefore,
there exists a forward invariant set Ω and by LaSalle’s invari-
ance principle the solutions that start in Ω converge to the
largest invariant set contained in

Ω ∩ {(x, xc) ∈ X × Xc|İs = 0, İ = 0,

u̇∗ = 0, İ∗s = 0, V̇ ∗ = 0, ν̇ = 0}.
(33)

Then, from the proofs of Propositions 1 and 2, we conclude
that the solutions starting in Ω converge to the largest invariant
set contained in Ω ∩ Ecl, concluding the proof of the propo-
sition.

V. SIMULATION RESULTS

In this section, the proposed distributed optimal primal-dual
controller (24) is assessed in simulation, by implementing a
smart grid comprising four prosumers (Pros.) connected as
illustrated in Figure 2. Three different scenarios are investi-
gated and discussed. The physical parameters of the smart
grid are reported in Table II, while the social parameters πci
and πui appearing in the cost and utility functions of prosumer
i are reported in Table III. Moreover the acceptable level of
flexibility of prosumer i in (19) is chosen as umin

li = 0.4,
for each prosumer of the considered smart grid. All the τ -
parameters of the proposed primal-dual controller (24) are
selected equal to 1, and in the optimization problem (17) we
choose α = β = γ = 1. Before discussing the three considered
scenarios in the following, we notice that for negligible values
of the parasitic resistance Rsi, the inequality constraint (18)
implies V min

i ≤ V i ≤ V max
i . We select Vdi = 380 V, V min

i =
378 V and V max

i = 382 V for all the prosumers.
In the first scenario we consider a realistic scenario in which

all the prosumers have different but homogeneous behaviors.
We can observe in Figure 3 that the voltage at the PCC
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TABLE II
PHYSICAL PARAMETERS

Pros. 1 Pros. 2 Pros. 3 Pros. 4
Lsi (mH) 1.8 2.0 3.0 2.2
Csi (mF) 2.2 1.9 2.5 1.7
Rsi (mΩ) 2.0 3.0 1.5 1.0
Ili (A) 30.0 30.0 30.0 30.0

πcapacity
ci 1 1 1 1

Line 1 Line 2 Line 3 Line 4
Rk (mΩ) 70 50 80 60
Lk (µH) 2.1 2.0 3.0 2.2

TABLE III
SOCIAL PARAMETERS

Scenario Pros. 1 Pros. 2 Pros. 3 Pros. 4

1 πci 5/8 6/7 7/6 8/5
πui 8/7 9/6 9/5 8/3

2 πci 50/8 60/7 70/6 80/5
πui 8/7 9/6 9/5 8/3

3 πci 5/8 6/7 7/6 80/5
πui 8/7 9/6 9/5 8/3

of each prosumer remains within the bounds that ensure a
proper functioning of the connected appliances and a safe and
reliable functioning of the overall grid. Moreover, the voltage
difference between the PCCs of the prosumers imply that
they are sharing current flows. In particular, we can observe
that the most selfish and less altruistic prosumer (Pros. 4) is
generating less current than for instance the least selfish and
most altruistic prosumer (Pros. 1). We can also observe that
the prosumers who care more about the environment and less
about the comfort reduce the current demand to lower values
than prosumers who care more about comfort and less about
environment.

In the second scenario we investigate the case in which all
the prosumers are much more selfish. From Figure 4 we can
observe that the disadvantage for not cooperating and sharing
the generated currents is the maximum permitted reduction of
the load demand, implying less comfort and pleasure for all
the prosumers.

To conclude, in the last scenario we investigate the case
in which only one prosumer (Pros. 4) is defecting from the
cooperation strategy. Indeed, we consider Pros. 4 to be much
more selfish than all the other prosumers of the considered
smart grid. From Figure 5 we observe that Pros. 4 is taking
advantage of the altruistic prosumers. This scenario opens
interesting future research directions towards the inclusion
of price-based mechanisms and/or the analysis of imitation
dynamics in social networks.

VI. CONCLUSION

Our work shows how incorporating social aspects of pro-
sumers in a DC smart grid can affect the outcomes and
performance of the proposed primal-dual controller. This not
only provides initial insights in how social aspects could be
integrated in control algorithms and how this could be of use,
but also identifies key issues future research should address,
resulting in the following research agenda. Firstly, future

0 0.2 0.4 0.6 0.8 1
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380

382

0 0.2 0.4 0.6 0.8 1
0

10

20

30

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Fig. 3. Scenario 1. From the top: voltage at the PCC; generated current; load
control input.
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1

Fig. 4. Scenario 2. From the top: voltage at the PCC; generated current; load
control input.
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Fig. 5. Scenario 3. From the top: voltage at the PCC; generated current; load
control input.

research should provide insights in which numerical values
are associated with the value-based parameters (i.e., egoistic,
altruistic, hedonic and biospheric). Secondly, research should
focus on the dynamics of social aspects over time. For exam-
ple, how will prosumers react when one prosumer defects,
for instance because this person has strong egoistic values
(Scenario 3). One option might be that the defector might
start sharing power because of social pressure and norms;
alternatively, the defector might demotivate others to share
their generated power, reducing the amount of power shared
within the local network and resulting in an uncomfortable
solution (Scenario 2). Working on these questions, for which
our paper provides initial steps, could greatly contribute to a
transition towards 100% renewable energy systems, making
solution more acceptable, desirable and realistic.
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