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Abstract— This paper presents a novel Second Order Sliding

Mode (SOSM) control algorithm for a class of nonlinear

systems subject to matched uncertainties. By virtue of its Event-

Triggered nature, it can be used as a basis to construct robust

networked control schemes. The algorithm objective is indeed

to reduce the number of state transmissions over the network,

in order to alleviate the network congestion and reduce possible

packet loss, jitter and delays, while guaranteeing satisfactory

performance in terms of stability and robustness. The proposed

Event-Triggered Second Order Sliding Mode control strategy

is theoretically analyzed in the paper, showing its capability

of enforcing the robust ultimately boundedness of the sliding

variable and its first time derivative, and consequently the

practical stability of the uncertain nonlinear system, in spite of

the significant reduction of the number of state transmissions

with respect to a conventional SOSM control approach. The

satisfactory performance of the proposed scheme are also

assessed in simulation.

I. INTRODUCTION

In Networked Control Systems (NCSs), the presence of the
network in the control loop can determine a decrement of the
performance because of packet loss, jitter, and transmission
delays, which can affect the overall system [1]. Moreover,
the network malfunctions tend to increase with the network
congestion, so that the design of robust control schemes, able
to reduce the measurements transmissions over the network,
can be beneficial.

In the literature, the so-called Event-Triggered (ET) control
approach [2] has been proposed as an effective solution for
networked control schemes. In contrast to conventional time-
triggered control, which features periodic transmissions of
the state measurements, ET control enables the state mea-
surements transmissions only when a pre-specified triggering
condition is satisfied (or violated, depending on the adopted
logic). This significantly reduces the transmissions over the
network and the consequent possible network congestion
caused by the control activity. Moreover, in the literature, it
has been proved that, in spite of the aperiodic transmission
of the state of the controlled system, satisfactory stability
properties can be guaranteed by ET control schemes [2], [3].

On the other hand, Sliding Mode (SM) control is a
well-known robust control approach, especially useful to
control systems subject to modelling uncertainties and external
disturbances [4], [5]. Because of its robustness, SM control
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is an effective control strategy also in case of NCSs. The
same holds for higher order and, in particular, Second Order
Sliding Mode (SOSM) control [6]–[8], in which not only
the sliding variable but also some of its time derivatives are
steered to zero in a finite time. This is confirmed by the
numerous applications described in the literature (see, for
instance, [9]–[16]).

In this paper, SOSM control and ET control are coupled to
design a control scheme, which can be useful in networked
implementations. More precisely, we do not adopt a mathemat-
ical model of the network, but we design the control strategy
in order to reduce data transmission as much as possible. The
proposed ET-SOSM control algorithm, designed for a rather
general class of uncertain nonlinear systems, is based on a
triggering condition which depends on the sliding variable
and its first time derivative. The considered system subject
to the application of the proposed algorithm is theoretically
analyzed in the paper, proving the ultimately boundedness, in
a suitable convergence set, of the sliding variable and its first
time derivative, and consequently the practical stability of
the uncertain nonlinear system. This practical stability result
is obtained in spite of the significant reduction of the number
of state transmissions with respect to a conventional SOSM
control approach.

Note that in previous papers [17], [18], the combined use of
SM control and Model-Based ET or genuine ET control was
already discussed. The differences between the present paper
and [17] lie in the possibility of avoiding the use of a nominal
model, of solving a sliding mode control problem for systems
with relative degree 2, and of providing an intrinsic chattering
alleviation capability in case of systems with relative degree 1.

The present paper is organized as follows. In Section II,
the considered control problem is suitably formulated. The
proposed control strategy is described in details in Section
III. In Section IV, the stability properties of the overall ET-
SOSM control scheme are formally analyzed, while some
simulation results are reported and discussed in Section V.
Some conclusions are finally gathered in Section VI.

II. PROBLEM FORMULATION

Consider a plant (process and actuator) which can be
described by the single-input system affine in the control
variable

ẋ(t) = a(x(t))+b(x(t))u(t)+dm(x(t), t) (1)

where x 2 W (W ⇢ Rn bounded) is the state vector, the value
of which at the initial time instant t0 is x(t0) = x0, and u 2R
is a scalar input subject to the saturation [�Umax ,Umax],
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Fig. 1. The proposed Event-Triggered Second Order Sliding Mode control scheme.

while a(x(t)) : W ! Rn and b(x(t)) : W ! Rn are uncertain
functions of class C1. Moreover, system (1) is affected by
the external disturbance dm(·) assumed to be matched, i.e.,

dm(x(t), t) = b(x(t))d(t) (2)

such that

d 2D ⇢ R (3)

where Dsup , sup
d2D{|d|} is a known positive constant.

Define a suitable output function s(x(t)) : W ! R suf-
ficiently smooth and of class C2. This function is called
“sliding variable” and it has to be such that: if u(t) in (1) is
designed so that, in a finite time t

?
r � t0 (ideal reaching time),

s(x(t?r )) = 0 8x0 2 W and s(x(t)) = 0 8 t > t
?
r , then 8 t � t

?
r

the origin is an asymptotically stable equilibrium point of (1)
constrained to s(x(t)) = 0. Then, the input-output map is

8
><

>:

ẋ(t) = a(x(t))+b(x(t))(u(t)+d(t))

y(t) = s(x(t))

x(t0) = x0

(4)

Assume that (4) is complete in W, i.e., x(t) 2 W and, for each
initial state x0 and each control u, x(t) is defined 8 t � t0.
Moreover, assume that (4) has a uniform relative degree equal
to 2 and admits a global normal form in W, i.e., there exists
a global diffeomorphism of the form F(x) : W ! FW ⇢ Rn

F(x) =

0

@
Y(x)
s(x)

a(x) ·—s(x)

1

A=

✓
xr
x

◆

Y : W ! Rn�2, xr 2 Rn�2, x =

✓
s(x)
ṡ(x)

◆
2 R2

such that,
8
>>>>><

>>>>>:

ẋr = ar(xr ,x ) (5a)
ẋ1 = x2 (5b)
ẋ2 = f (xr ,x )+g(xr ,x )(u+d) (5c)
y = x1 (5d)
x (t0) = x0 (5e)

with

ar(xr ,x ) =
dY
dx

(F�1(xr ,x ))a(F�1(xr ,x ))

f (xr ,x ) = a(F�1(xr ,x )) ·—(a(F�1(xr ,x )) ·—s(F�1(xr ,x )))
g(xr ,x ) = b(F�1(xr ,x )) ·—(a(F�1(xr ,x )) ·—s(F�1(xr ,x )))

Note that, by the assumption of uniform relative degree, it
yields

g(xr ,x ) 6= 0, 8(xr ,x ) 2 FW (6)

In the literature, subsystem (5b)-(5e) is called “auxiliary
system” [6]. Since ar(·), f (·), g(·) are continuous functions
and FW is a bounded set, one has

9F > 0 : | f (xr ,x )| F 8(xr ,x ) 2 FW (7)
9Gmax > 0 : g(xr ,x )  Gmax 8(xr ,x ) 2 FW (8)

Moreover, one can also assume that

9Gmin > 0 : g(xr ,x ) � Gmin 8(xr ,x ) 2 FW (9)

Relying on (5)-(9), we can introduce a preliminary control
problem: design a feedback control law

u(t) = k(s(x(t)) , ṡ(x(t))) (10)

such that

8x0 2 W, 9 t
?
r � t0 : s(x(t)) = ṡ(x(t)) = 0, 8 t � t

?
r (11)

in spite of the uncertainties.

Remark 1: Note that if the preliminary control problem is
solved, because of the choice of s , one has that 8x0 2 W,
the origin of the state space is a robust asymptotically stable
equilibrium point for (1)-(9).

Consider now how the control law (10) is realized in
field implementations. Typically, the state is sampled at
time instants tk, k 2 N, and the control law is held constant
between two successive samplings by using a zero-order-
hold (ZOH). In conventional implementation, the sequence
{tk}k2N is periodic and the control approach is classified as
“time-triggered”.

In the present paper, we want to design a solution for
NCSs, therefore reducing the transmissions over the network.
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Fig. 2. Representation of regions S4 and S5 for the triggering condition.

Then, the idea is to introduce a triggering condition, so that
the values of s and ṡ are transmitted only when such a
condition is satisfied. As a consequence, the control law is
computed and sent to the plant only at the triggering time
instants, and the overall control strategy is of “event-triggered”
type.

Taking into account the previous considerations, and mak-
ing reference to (5)-(9), we can move from the preliminary
control problem to the formulation of the problem which will
be actually solved: design a feedback control law

u(t) = u(tk) = k(s(x(tk)), ṡ(x(tk))) (12)

8t 2 [tk, tk+1[, tk, tk+1 2 T , k 2 N, T being the set of the

triggering time instants, such that

8x0 2W, 9 tr � t0 : |s(x(t))| d1, |ṡ(x(t))| d2,8 t � tr (13)

with d1 and d2 positive constants arbitrarily set.

Remark 2: Note that, when the natural relative degree
of system (1) is equal to 1, the foregoing problem can be
analogously formulated by artificially increasing the relative
degree of the system. The motivation for solving that problem
in presence of a system having unitary relative degree could
be the so-called “chattering alleviation” [6], [19]

III. THE NEW PROPOSAL: EVENT-TRIGGERED SECOND
ORDER SLIDING MODE CONTROL

Consider the ET-SOSM control scheme reported in Fig. 1.
It contains two key blocks: the smart sensor and the SOSM
controller. These blocks are hereafter detailed.

A. The Smart Sensor

We assume that the considered sensor is smart in the sense
that it has some computation capability, i.e., it is able to verify
a triggering condition. The triggering condition adopted in
this paper is the following

(s , ṡ) 2 {S1 [ S2 [ S3 [ S4 [ S5} (14)

where

S1 ,
�
(s , ṡ) : |ṡ |� d2

 

S2 ,
�
(s , ṡ) : s � d1 , �d2 < ṡ  0

 

S3 ,
�
(s , ṡ) : s �d1 , 0  ṡ < d2

 

S4 ,
�
(s , ṡ) : s �� ṡ |ṡ |

2Umin
+d1 , 0 < ṡ < d2

 

S5 ,
�
(s , ṡ) : s � ṡ |ṡ |

2Umin
�d1 , �d2 < ṡ < 0

 

with d1 and d2 positive constants arbitrarily set. The regions
S4 and S5 are graphically represented in Fig. 2. The control
amplitude Umin <Umax is able to dominate only the drift term
f (xr ,x ) in (5). Then, by virtue of bounds (7) and (9), it is
necessary to impose that

Umin >
F

Gmin
(15)

Only when the triggering condition (14) is true, are s and
ṡ transmitted by the sensor over the network, so that the
control law is computed and sent to the plant.

B. The Second Order Sliding Mode Controller

Before introducing the proposed control algorithm, let us
define the convergence set

B , R2 \ {S1 [ S2 [ S3 [ S4 [ S5} (16)

In the following sections ∂B will denote the boundary of B,
and sk, ṡk will denote the values of the sliding variable and
its first time derivative at the triggering time instants tk, k 2N.

To solve the control problem (12), (13) formulated in
Section II, we design an event-triggered SOSM control
scheme which uses two different control laws.

Control Law 1:
Let s(x(t0)) = s0 and ṡ(x(t0)) = ṡ0 be the initial conditions
of the sliding variable and its first time derivative, respectively.
If (s0, ṡ0) /2 {B[∂B}, the control law (12) can be chosen as
the classical bang-bang time-optimal control law depending
on both sk and ṡk, i.e.,

u(tk) =

8
>>>>>>>><

>>>>>>>>:

�Umax if
n

sk >� ṡk|ṡk|
2Umax

oS
n

sk =� ṡk|ṡk|
2Umax

\ sk < 0
o

+Umax if
n

sk <� ṡk|ṡk|
2Umax

oS
n

sk =� ṡk|ṡk|
2Umax

\ sk > 0
o

(17)

where Umax > Umin is a positive value suitably selected
in order to enforce a sliding mode, even in presence of
the external disturbance dm. This control law is applied
only during the reaching phase, i.e., till (s , ṡ ) reaches the
boundary ∂B. From the reaching time instant tr onwards, the
Control Law 2 will be applied.

Control Law 2:
If (s0, ṡ0) 2 {B[∂B}, or after the reaching phase (if



(s0, ṡ0) /2 {B[∂B}), the Control Law 1 is modified as
follows

u(tk) =

8
>>>>>>>>>><

>>>>>>>>>>:

�U(tk) if {ṡk > d2}
S

{ṡk > 0 \ sk = 0}
S

{|ṡk| d2 \ sk > 0}

+U(tk) if {ṡk <�d2}
S

{ṡk < 0 \ sk = 0}
S

{|ṡk| d2 \ sk < 0}

(18)

where the control amplitude U(tk), k 2 N, can assume two
different values, i.e.,

U(tk) =

8
>>>>>>>>>><

>>>>>>>>>>:

Umin if
n

0 < ṡk  d2 \

�d1  sk < D1

oS
n
�d2  ṡk < 0 \

�D1 < sk  d1

o

Umax otherwise

(19)

with

D1 ,� d 2
2

2Umin
+d1 (20)

indicated in Fig. 2.
The control law (12), with u(tk) as in (17)-(19), and the

triggering condition (14) give rise to the Event-Triggered
SOSM (ET-SOSM) control strategy that we propose to steer
s , ṡ to the convergence set B.

IV. STABILITY ANALYSIS

In this section, the properties of the proposed ET-SOSM
control strategy are analyzed. For the readers’ convenience,
we introduce the following definitions:

Definition 1: The sliding variable s and its first time
derivative ṡ are said to be ultimately bounded with respect to
the set Bdi

, i = 1,2, respectively, if in a finite time tri , i = 1,2,
they enter the bounded set Bdi

, i = 1,2, and there remain for
all subsequent time instants, i.e.,

8x0 2 W, 9 tr1 � t0 : s(x(t)) 2 Bd1 8 t � tr1

8x0 2 W, 9 tr2 � t0 : ṡ(x(t)) 2 Bd2 8 t � tr2

where

Bd1 ,
�

s(x(t)) : |s(x(t))| d1
 

Bd2 ,
�

ṡ(x(t)) : |ṡ(x(t))| d2
 

with d1, d2 positive constants.
Definition 2: The solution (s , ṡ) to the auxiliary system

(5b)-(5e) is said to be ultimately bounded with respect to
the closed set B if in a finite time tr = max(tr1 , tr2) it enters
the closed set B and there remains for all subsequent time
instants, i.e.,

8x0 2 W, 9 tr � t0 : (s(x(t)), ṡ(x(t))) 2 {B[∂B} 8t � tr

Definition 3: Let (s , ṡ) be the solution to the auxiliary
system (5b)-(5e) starting from the initial condition (s0, ṡ0).
The bounded set Bd1 is said to be positively invariant if
(s0, ṡ0) 2 {B[∂B} implies that s(x(t)) 2 Bd1 8t � t0.

Now, the following results can be proved, but, because of
space limitation, the corresponding proofs are omitted.

Lemma 1: Given the auxiliary system (5b)-(5e) starting
from the initial condition (s0, ṡ0) /2 {B[∂B} with d1,d2
arbitrarily set, controlled via (12), (17) and the triggering
condition (14), then, the solution (s , ṡ) to (5b)-(5e) is steered
to the set {B[∂B} in a finite time.

Remark 3: Note that during the reaching of the set
{B[∂B}, by virtue of Lemma 1, it is possible to update
the control law only when the auxiliary state-space trajectory
crosses the so-called “switching line”, i.e., when the following
condition holds

s =� ṡ |ṡ |
2Umax

Lemma 2: Given the auxiliary system (5b)-(5e) starting
from the initial condition (s0, ṡ0) 2 {B[∂B} with d1,d2
arbitrarily set, controlled via (12), (18)-(19) and the triggering
condition (14), then, if the maximum control amplitude Umax
in (19) is such that

Umax >
F +Umin

Gmin
+Dsup (21)

the boundary layer Bd1 is a positively invariant set for s and,
at most, ṡ switches along the bounds ±d2.

Now, relying on Lemma 1 and Lemma 2, one can prove the
major result concerning the evolution of the auxiliary system
(5b)-(5e) controlled via the proposed ET-SOSM control
strategy.

Theorem 1: Given the auxiliary system (5b)-(5e) starting
from the initial condition (s0, ṡ0) /2 {B[∂B} with d1,d2
arbitrarily set, controlled via (12), (17)-(19) with the addi-
tional constraint (21) and the triggering condition (14), then,
the solution (s , ṡ) to (5b)-(5e) is ultimately bounded with
respect to the closed set B and, at most, ṡ(t) switches along
the bounds ±d2.

Remark 4: Note that the proposed control scheme, because
of its event-triggered nature, cannot generate an ideal sliding
mode, but only a “practical sliding” mode. However, by
virtue of the Regularization Theorem in book [4, Chapter 2],
it can be proved that also the state of system (1) is ultimately
bounded. This implies that the control problem formulated
in Section II is equivalent to the problem of designing a
bounded control capable of enforcing the “practical stability”
of (1) with respect to (t0, tp, W, Wp,D), where Wp ⇢ W and
tp � tr, that is, according to LaSalle and Lefshetz [20], 8 t0 �
0, 8x0 2 W, 8d 2D, one has that x(t) 2 Wp, 8 t � tp.

V. SIMULATIONS

In this section, in order to illustrate the properties of the
proposed ET-SOSM control strategy, an academic example is
briefly discussed. Consider a perturbed chain of 3 integrators,
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i.e.,
8
>>><

>>>:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = 0.5x2(t)� x3(t)+u(t)+d(t)

y(t) = x1(t)+ x2(t)

(22)

where the external disturbance d(t), acting from t = 10.5 s
to t = 16 s, is such that Dsup = 4.4. Let t0 be equal to 0, and
the initial condition be x0 = [0.05 0.05 �0.5 ]T . Then, the
system is stabilized by choosing the sliding variable s(x(t))
as the controlled variable y(t), such that the corresponding
auxiliary system results in being

(
ẋ1(t) = x2(t)

ẋ2(t) = 0.5x2(t)+u(t)+d(t)
(23)

with the initial condition x0 = [0.1 �0.45 ]T . The ET-SOSM
control parameters are Umin = 0.5, Umax = 5.0, d1 = 0.05 and
d2 = 0.15. The trajectory of the state of the controlled system
is illustrated in Fig. 3. As expected, the state of system (22)
is steered to a small vicinity of the origin in a finite time and
there remains in spite of the action of the external disturbance
d. The auxiliary state-space trajectory with the convergence
set B is illustrated in Fig. 4, showing that the trajectory
of the auxiliary system (23) is steered to the convergence
set B in a finite time. More specifically, Fig. 5 shows that
the sliding variable s is steered to the boundary layer Bd1
in a finite time tr1 = 0.08 s, and it remains inside for all
subsequent time instants. Moreover, Fig. 6 shows that also ṡ
is steered to the boundary layer Bd2 in a finite time tr2 = 0.19 s,
and it remains inside for any subsequent time instant or, at
worst, it switches along the boundary of Bd2 . Then, one can
conclude that the auxiliary state-space trajectory is ultimately
bounded in B. The time evolution of the control variable u(t)
is shown in Fig. 7, while the flag function ft , representing
the numbers of triggering events, i.e., the transmission of the
actual state of the auxiliary system, is illustrated in Fig. 8.
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Fig. 4. Trajectory of the auxiliary system state with the convergence set.

More specifically, ft is a flag equal to 1 when the triggering
condition (14) holds. Note that, since the initial condition
(s0, ṡ0) is known, only one state transmission occurs during
the reaching phase (see zoom in Fig. 8), i.e., when the
auxiliary state-space trajectory crosses the switching line,
while the number of triggering events increases when the
disturbance d acts. However, considering a sampling time Ts =
1⇥10�4 s, and a simulation horizon T = 20 s, the number
of state transmissions with the proposed ET-SOSM control
algorithm is 1764, i.e., 99.1 % less then the number required
by the conventional time-driven implementation. Note that
reducing the parameters d1 and d2 results in improving the
convergence accuracy.

VI. CONCLUSIONS

In this paper a novel Second Order Sliding Mode control
strategy of event-triggered type for a class of nonlinear
uncertain systems is presented. The proposed control scheme
requires the transmission of the state of the controlled
auxiliary system only when a suitably defined triggering
condition is verified. In spite of this, it guarantees satisfactory
stability properties of the controlled system. In particular, in
the paper we prove that the solution of the controlled auxiliary
system is ultimately bounded in a prescribed convergence set
where the approximability property of classical Sliding Mode
control holds. We also observe that this implies the practical
stability of the considered uncertain nonlinear system. These
results are attained in spite of the significant reduction of
the number of transmissions of the system state. Simulation
assessment confirms the theoretical results.
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