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Abstract— This paper proposes a Distributed Second Order

Sliding Mode (D-SOSM) control strategy for Optimal Load

Frequency Control (OLFC) in power networks, where besides

frequency regulation also minimization of generation costs is

achieved. Because of unknown load dynamics and possible

network parameters uncertainties, the sliding mode control

methodology is particularly appropriate for the considered con-

trol problem. This paper considers a power network partitioned

into control areas, where each area is modelled by an equivalent

generator including second-order turbine-governor dynamics.

On a suitable designed sliding manifold, the controlled system

exhibits an incremental passivity property that allows us to

infer convergence to a zero steady state frequency deviation

minimizing the generation costs.

I. INTRODUCTION

As a result of power mismatch between generation and
demand, the frequency in the power system can deviate
from its nominal value. Regulating the frequency by Load
Frequency Control (LFC) in power systems composed of in-
terconnected Control Areas (CAs) is a challenging issue and
it is unsure if current implementations are adequate to deal
with an increasing share of renewable energy sources [1].

Traditionally, the LFC is performed at each CA by a primary
droop control and a secondary Proportional-Integral (PI) con-
trol. To cope with the increasing uncertainties affecting a CA
and to improve the controllers performance, advanced control
techniques have been proposed to redesign the conventional
LFC schemes, such as Model Predictive Control (MPC) [2],
adaptive control [3], fuzzy control [4] and Sliding Mode
(SM) control. However, due to the predefined power flows
through the tie-lines, the possibility of achieving economi-
cally optimal LFC is lost [5]. Besides improving the stability
and the dynamic performance of power systems, new control
strategies are additionally required to reduce the operational
costs of LFC [6]. In this paper we propose a novel distributed
Optimal LFC (OLFC) scheme that incorporates the economic
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dispatch into the LFC, departing from the conventional tie-
line requirements.

In order to obtain OLFC, the vast majority of solutions
appearing in the literature fit in one of two categories. First,
the economic dispatch problem is distributively solved by
a primal-dual algorithm converging to the solution of the
associated Lagrangian dual problem [7]–[9]. This approach
generally requires measurements of the loads or the power
flows, which is undesirable in a LFC scheme. This issue is
avoided by the second class of solutions, where a distributed
consensus algorithm is employed to converge to a state
of identical marginal costs, solving the economic dispatch
problem in the unconstrained case [10]–[13].The proposed
solution in this work fits in the second category, where we
utilize a distributed sliding model control scheme to achieve
consensus in the marginal costs.

Sliding mode control [14], [15] has been used to improve the
conventional LFC schemes [16], possibly together with fuzzy
logic [17] and disturbances observers [18]. However, the
proposed use of SM to obtain a distributed OLFC scheme is
new and can offer a few advantages over the previous results
on OLFC. Foremost, it is possible to incorporate the widely
used second-order model for the turbine-governor dynamics
that is currently neglected in the analytical OLFC studies.

In this paper, we adopt a nonlinear model of a power network
partitioned into control areas having an arbitrarily complex
and meshed topology. The generation side is modelled by an
equivalent generator including second-order turbine-governor
dynamics, where the proposed control scheme continuously
adjusts the governor set point. Conventional SM controllers
can suffer from the notorious drawback known as chattering
effect, due to the discontinuous control input. To alleviate
this issue, we incorporate the well known Suboptimal Second
Order Sliding Mode (SSOSM) control algorithm [19].

Relying on an incremental passivity property of the power
network [10], [20], we design a suitable sliding manifold,
such that, when the controlled system is constrained to this
manifold, the frequency deviation asymptotically converges
to zero and the total generation costs are minimized. This
result is obtained by avoiding the measurement of the power
demand and the use of observers [21], which is an element
concurring to the ease of practical implementation of the
proposed control strategy.

II. NETWORK MODEL
In this section the dynamic model of a power grid parti-

tioned into control areas is presented. The dynamic behaviour



�
+

ui 1
Tgi s + 1

Governori

1
Tti s + 1

Turbinei

Pgi �
�+

Pdi

V ?
i V ?

j
Xi j

sin(di �d j)

Pti Kpi
Tpi s + 1

Power Systemi

fi

1
Ri

�+
u j 1

Tg j s + 1

Governor j

1
Tt j s + 1

Turbine j

Pg j +
�+

Pd j

Pt j Kp j
Tp j s + 1

Power System j

f j

1
R j

Fig. 1. Block diagram of two interconnected control areas.

of a single control area is described by an equivalent thermal
power plant with a non-reheat turbine, which is commonly
represented by second order turbine-governor dynamics.

Consider a power network consisting of n interconnected
control areas. The network topology is represented by a
connected and undirected graph G = (V,E), where the nodes
V = {1, ...,n}, represent the control areas and the edges
E ⇢ V ⇥ V = {1, ...,m}, represent the transmission lines
connecting the areas. The topology can be described by its
corresponding incidence matrix D2Rn⇥m. Then, by arbitrary
labeling with a ‘+’ and a ‘-’ the ends of edge k, one has that

Dik =

8
><

>:

+1 if i is the positive end of k
�1 if i is the negative end of k
0 otherwise.

Now, not distinguishing between generator and load buses,
the governing dynamic equations of the i-th node are the
following:

ḋi = 2p fi

ḟi = � 1
Tpi

fi +
Kpi
Tpi

Pti �
Kpi
Tpi

Pdi

�Kpi
Tpi

Â
j2Ni

V ?
i V ?

j

Xi j
sin(di �d j),

(1)

where Ni is the set of nodes (i.e., control areas) connected
to the i-th node by transmission lines. Note that we have
assumed that the network is lossless, which is generally the
case in high voltage transmission networks. Moreover, Pti
in (1) is the power generated by the i-th thermal plant, and
it can be expressed as the output of the following second
order dynamic system that describes the behaviour of both
the governor and the turbine of the thermal power plant, i.e.,

Ṗti = � 1
Tti

Pti +
1

Tti
Pgi

Ṗgi = � 1
RiTgi

fi � 1
Tgi

Pgi +
1

Tgi
ui.

(2)

The main symbols used in systems (1) and (2) are described
in Table I, and a block diagram of the considered system

TABLE I
DESCRIPTION OF THE USED SYMBOLS

Symbol Description

di Voltage angle variation
fi Frequency deviation
Pti Turbine output power variation
Pgi Governor output variation

Tpi Time constant of the control area
Tti Time constant of the turbine
Tgi Time constant of the governor
Kpi Gain of the control area
Ri Speed regulation coefficient
V ?

i Constant voltage
Xi j Line reactance

ui Control input
Pdi Unknown power demand

with two control areas is represented in Fig. 1.

We now write system (1) and the turbine-governor dynamics
in (2) compactly for all nodes i 2 V as

ḣ = 2pDT f
ḟ =�T�1

p f +KpT�1
p Pt �KpT�1

p Pd

�KpT�1
p DGSin(h), (3a)

Ṗt =�T�1
t Pt +T�1

t Pg

Ṗg =�R�1T�1
g f �T�1

g Pg +T�1
g u, (3b)

where h = DT d 2 Rm, f 2 Rn, Pt 2 Rn, Pg 2 Rn,
G = diag{g1, . . . ,gm}, with gk = V ?

i V ?
j /Xi j, Sin(h) =

[sin(h1), . . . ,sin(hm)]T , Pd 2 Rn and u 2 Rn. Matrices
Tp,Tt,Tg,Kp,R are suitable n⇥n diagonal matrices.

To permit the controller design, the following assumption is
introduced.

Assumption 1 The variables fi,Pti ,Pgi are locally available
at control area i. The unmatched disturbance Pdi is unknown,
constant and can be bounded as

|Pdi |Di, (4)

where Di is a positive constant available at control area i.

III. PROBLEM FORMULATION

Optimal LFC has two main objectives. First, the control
scheme needs to regulate the frequency towards its nominal
value, i.e.

lim
t!•

f = 0. (5)

Second, the OLFC should obtain an economic dispatch, i.e.
it needs to minimize the total costs C(Pt) of the power
generation required to control the frequency

min
Pt

C(Pt) = min
Pt

Â
i2V

Ci(Pti)

s.t. 0 = 1
T
n Pt �1

T
n Pd,

(6)



where 1n 2 Rn is the vector containing all ones, while the
equality constraint follows from the requirement of a zero
frequency deviation at steady state. Before further elaborat-
ing on this, we make the assumption of existence of a steady
state of the system under a constant control input u.

Assumption 2 Given a constant power demand Pd, there
exist u, h 2R(DT ), f 2N (DT ), Pt 2 Rn and Pg 2 Rn such
that (h , f ,Pt,Pg) satisfies

0 = 2pDT f
0 =�T�1

p f +KpT�1
p Pt �KpT�1

p Pd

�KpT�1
p DGSin(h), (7a)

0 =�T�1
t Pt +T�1

t Pg

0 =�R�1T�1
g f �T�1

g Pg +T�1
g u. (7b)

From algebraic manipulations of (7) it follows that the steady
state frequency deviation is given by

f = 1n
1

T
n (Pt �Pd)

1T
n K�1

p 1n
. (8)

From (8) it becomes clear that we indeed require the equality
constraint in (6) to have a zero frequency deviation at steady
state. The generation costs associated to control area i are
commonly described by a strictly convex linear-quadratic
cost function

Ci(Pti) =
1
2

qiP2
ti + ziPti + si,

such that the total costs in the power network can be
expressed as

C(Pt) =
1
2

PT
t QPt +ZT Pt +1

T
n S, (9)

where Q is a n ⇥ n positive definite diagonal matrix and
Z,S 2 Rn. It is now possible to explicitly characterize the
solution Popt

t to the optimization problem (6).

Lemma 1 Given the cost function (9) with Q a positive
definite diagonal matrix, the solution Popt

t to the optimization
problem (6) satisfies

Popt
t = Q�1(1nl �Z), (10)

with

l =
1

T
n Pd +1

T
n Q�1Z

1T
n Q�11n

2 R. (11)

From (10) it follows that QPopt
t + Z = 1nl 2 R(1n). Con-

sequently, at the economic dispatch all the marginal costs
associated to power generation are equal. However, note
that in (11) the value of Pd is required, which is generally
unavailable in practical cases. The proposed solution in the
next section overcomes this issue by simultaneously solving
(6) and controlling the frequency without load measurements.

Now we are in a position to formulate the control problem:
Let Assumptions 1 and 2 hold. Given system (3) and the
optimization problem (6), design a distributed control scheme
achieving frequency regulation and minimizing, at the steady
state, the generation costs.

IV. THE PROPOSED SOLUTION
In this section a Distributed Suboptimal Second Order

Sliding Mode (D-SSOSM) control algorithm is proposed to
solve the aforementioned control problem. To do so, the well
established SSOSM controller proposed in [19] is applied
to the power network augmented with a distributed control
scheme proposed in [20], leading to an overall distributed
solution.

In order to define (and converge to) a sliding manifold on
which a useful passivity property of the turbine-governor
can be established (see Lemmas 3 and 4), and to enforce
optimality at steady state (see the proof of Theorem 1), we
augment the state of system (3) with additional state variables
Ji, i = 1, . . . ,n. Their dynamics are given by

TJi J̇i = Pti �Ji �ai Â
j2N comm

i

(qiJi + zi � (q jJ j + z j)), (12)

where N comm
i is the set of the nodes that communicate with

node i, and ai is a positive constant. Note that the induced
communication is required to achieve optimality.

Remark 1 The topology of the communication network is
described by the Laplacian matrix Lc. The dynamics in (12)
can now be expressed compactly for all nodes i 2 V as

TJ J̇ = Pt �J �ALc(QJ +Z), (13)

where A2Rn⇥n is a positive definite diagonal matrix suitably
selected. A possible choice of A is provided in the next
section.

To guarantee an optimal coordination throughout the whole
network the following assumption is made:

Assumption 3 The undirected graph corresponding to the
topology of the communication network is connected.

Consider now the power network (3) augmented with (13).
We select the sliding variables vector s 2 Rn as

s = M1 f +M2Pt +M3Pg +M4J , (14)

M1, . . .M4 being constant n ⇥ n diagonal matrices suitable
selected in order to assign the dynamics of the augmented
system when s = 0. The permitted values for M1, . . .M4
follow from the stability analysis and should be chosen to
enforce a useful passivity property of the turbine-governor
on the corresponding sliding manifold. A further discussion
is provided in Lemmas 3 and 4 in the next section.

Remark 2 Because M1, . . . ,M4 are diagonal matrices, each
sliding variable si is defined by only local variables at
node i.



We now continue by describing the controller that guarantees
the convergence to the sliding manifold s = ṡ = 0. Since the
system relative degree1 is equal to 1, then, in order to obtain
a continuous control input, the SSOSM control algorithm can
be applied by artificially increasing the relative degree of the
system. By defining the auxiliary variables vectors x1 = s
and x2 = ṡ , the so-called auxiliary system is

8
><

>:

ẋ1 = x2

ẋ2 = j +gw
u̇ = w,

(15)

where x2 is not measurable. Indeed, according to Assumption
1, Pd is unknown. Bearing in mind (14) and that s̈ = j+gw,
it follows that j 2 Rn and g 2 Rn⇥n are given by

j =
⇣

M1T�2
p +M3R�1T�1

g T�1
p �M2T�1

t R�1T�1
g

+M3T�1
g R�1T�1

g

⌘
f �

⇣
M1T�1

p KpT�1
p

+M3R�1T�1
g KpT�1

p +M1KpT�1
p T�1

t �M2T�2
t

⌘
Pt

+
⇣

M1KpT�1
p T�1

t �M2T�2
t �M2T�1

t T�1
g

+M3T�2
g

⌘
Pg +

⇣
M2T�1

t �M3T�1
g

⌘
T�1

g u

+
⇣

M1T�1
p +M3R�1T�1

g

⌘⇣
KpT�1

p Pd

+KpT�1
p DGSin(h)

⌘

�M1KpT�1
p DG d

dt Sin(h)+M4J̈ ,

g = M3T�1
g ,

(16)

with d
dt Sin(h) = [cos(h1)ḣ1, . . . ,cos(hm)ḣm]T . Note that,

j, g are uncertain due to the presence of the unmeasurable
power demand Pd and possible parameters uncertainties.

Remark 3 Note that the uncertain function j in (16) de-
pends on the system state and on the control input u.
However, it is locally bounded since the operational region
in practical cases is always bounded, and in a vicinity of
the sliding manifold the control input u remains close to the
so-called equivalent control [22].

Making reference to condition (4), and assuming that the
parameters uncertainties are bounded, then j and g can be
bounded as

|ji| Fi, i = 1, . . . ,n (17)

Gmini  gii  Gmaxi , i = 1, . . . ,n (18)

Fi, Gmini and Gmaxi , i = 1, . . . ,n, being positive constants.
However, if the bounds Fi, Gmini and Gmaxi , i = 1, . . . ,n,
cannot be a-priori estimated, the adaptive version of the
SSOSM algorithm proposed in [23] can be used in order
to dominate the effect of the uncertainties.

1The relative degree is the minimum order r of the time derivative s (r)
i , i=

1, . . . ,n, of the sliding variable associated to the i-th node in which the
control ui, i = 1, . . . ,n, explicitly appears.

To steer x1i and x2i , i = 1, . . . ,n, to zero in a finite time even
in presence of the uncertainties, the SSOSM algorithm [19]
is used. Consequently, the control law for the i-th node is
given by

wi =�aiWmaxi sgn
✓

x1i �
1
2

x1,maxi

◆
, (19)

with

Wmaxi > max
✓

Fi

a⇤
i Gmini

;
4Fi

3Gmini �a⇤
i Gmaxi

◆
, (20)

a⇤
i 2 (0,1]\

✓
0,

3Gmini

Gmaxi

◆
. (21)

In (19) the extremal values x1,maxi can be detected by imple-
menting for instance a peak detection as in [22]. Moreover,
note that the discontinuous SSOSM control law (19) only
affects ẋ2i , and the control ui fed into the governor of the
node i is continuous.

V. STABILITY ANALYSIS AND MAIN RESULT
In this section we study the stability of the proposed

control scheme. Specifically, we prove that given the pro-
posed control scheme, system (3) converges to the set where
f = 0 and Pt = Popt

t . In order to invoke LaSalle’s invariance
principle later on, we make the following assumption on
the differences of voltage angles at steady state, which is
generally satisfied under normal operating conditions of the
power network.

Assumption 4 At the steady state, h 2 (�p
2 ,

p
2 )

m holds.

Furthermore the analysis relies on the notion of incremental
passivity [24], [25]. We now recall a useful result from [10]

Lemma 2 Let Assumptions 1 and 4 hold. System (3a) with
input Pt and output f is an output strictly incrementally
passive system, with respect to the steady state satisfying

0 = 2pDT
0

0 =�T�1
p 0+KpT�1

p Popt
t �KpT�1

p Pd

�KpT�1
p DGSin(h).

(22)

Namely, there exists a storage function U1( f ,0,h ,h) which
satisfies the following incremental dissipation inequality

U̇1 =� f T K�1
p f + f T (Pt �Popt

t ). (23)

In various studies on Optimal LFC, this passivity property
has been exploited to derive suitable controllers in the
absence of second-order turbine-governor dynamics. Unfor-
tunately, the second order turbine-governor dynamics do not
possess a useful passivity property that allows for a passive
interconnection2. To overcome this issue, the SSOSM control
enforces the turbine-governor dynamics to converge in a
finite time to a sliding manifold where this passivity property
is recovered under the following assumption.

2This can be readily concluded from the observation that (3b) with input
� f and output Pt has relative degree 2.



Assumption 5 Let M1 > 0,M2 � 0,M3 > 0 and M4 =
�(M2+M3) in (14). Furthermore, let A = (M2+M3)�1M1Q
in (13).

Note that this assumption can always be fulfilled. We first
characterize this sliding manifold in the lemma below.

Lemma 3 Let Assumptions 2 and 5 hold. System (3b) aug-
mented with (13) converges in a finite time tr to the sliding
manifold where

Pg =�M�1
3 (M1 f +M2Pt +M4J), 8 t � tr. (24)

The proof follows from applying the SSOSM controller (19)–
(21) to each control area such that a second order sliding
mode is enforced. As a result of Lemma 3 we can substitute
(24) in (3), 8 t � tr, obtaining the following reduced order
system

ḣ = 2pDT f
TpK�1

p ḟ =�K�1
p f +Pt �Pd �DGSin(h), (25a)

M�1
1 M3TtṖt =�M�1

1 (M2 +M3)Pt � f �M�1
1 M4J

TJ J̇ = Pt �J �ALc(QJ +Z)
s = 0, (25b)

where the dynamics of the governor has been replaced by the
equality constraint s = 0. Indeed, one can observe that the
dynamics of the governor can be obtained by differentiating
(24). Incremental passivity of (25b) can now be proven.

Lemma 4 Let Assumptions 1, 2 and 5 hold. System (25b)
with input � f and output Pt is an incrementally passive
system, with respect to the steady state satisfying

0 =�M�1
1 (M2 +M3)P

opt
t �0�M�1

1 M4J
0 = Popt

t �J �ALc(QJ +Z).
(26)

Namely, the storage function

U2 =
1
2
(Pt �Popt

t )T M�1
1 M3Tt(Pt �Popt

t )

+
1
2
(J �J)T M�1

1 (M2 +M3)TJ (J �J),
(27)

satisfies the following incremental dissipation inequality

U̇2 =� (Pt �J)T M�1
1 (M2 +M3)(Pt �J)

� (QJ +Z)T Lc(QJ +Z)� (Pt �Popt
t )T f ,

(28)

along the solutions to (25b).

Remark 4 Note that the term �ALc(QJ + Z) in (25b) is
not needed to enforce the discussed passivity property, but
is required to prove convergence to the economic efficient
generation Popt

t . In fact, setting A = 0 still permits to infer
frequency regulation in Theorem 1 below.

Now, we can prove the main result of this paper concerning
the evolution of the augmented system controlled via the
proposed D-SSOSM control strategy.
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Theorem 1 Let Assumptions 1–5 hold. Consider system
(3), augmented with the distributed averaging integrators
(13) and controlled via (14)-(21). Then, the solutions of
the closed-loop system starting in a neighbourhood of the
equilibrium (h , f = 0, Popt

t , J = Popt
t ) approach the largest

invariant set where f = 0 and Pt = Popt
t .

The proof follows from evaluating the incremental storage
function U =U1+U2 along the solution to the reduced order
system (25) and applying LaSalle’s invariance principle.

VI. SIMULATION RESULTS

In this section, the proposed control solution is assessed
in simulation by implementing a power network partitioned
into four control areas (e.g. the IEEE New England 39-
bus system [26]). The topology of the power network is
represented in Figure 2 together with the communication
network (dashed lines). The line parameters are g1 = 5.4
p.u., g2 = 5.0 p.u., g3 = 4.5 p.u. and g4 = 5.2 p.u., while the
network parameters and the power demand DPdi of each area



TABLE II
NETWORK PARAMETERS AND POWER DEMAND

A
re

a
1

A
re

a
2

A
re

a
3

A
re

a
4

Tpi (s) 21.0 25.0 23.0 22.0
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
Kpi (Hz p.u.�1) 120.0 112.5 115.0 118.5
Ri (Hz p.u.�1) 2.5 2.7 2.6 2.8
TJi (s) 0.33 0.33 0.33 0.33
qi (104 $ h�1) 2.42 3.78 3.31 2.75
DPdi (p.u.) 0.010 0.015 0.012 0.014

are provided in Table II, where a base power of 1000 MW is
assumed. The matrices in (14) are chosen as M1 = 3I4, M2 =
I4, M3 = 0.1I4 and M4 = �(M2 +M3), I4 2 R4⇥4 being the
identity matrix, while the control amplitude Wmaxi and the
parameter a⇤

i , i = 1, . . . ,4, in (19) are selected equal to 10
and 1, respectively. Note that, for the sake of simplicity, in
the cost function (9) we select Z = S = 0. In simulation, the
system is initially at the steady state, implying that all the
sliding variables are equal to zero. Then, at the initial time
instant t0 = 0 s, the power demand in each area is increased
according to the values reported in Table II. From Figure
3, one can observe that the frequency deviations converge
asymptotically to zero after a transient where the frequency
drops because of the increasing load. Indeed, one can note
that the proposed controllers increase the power generation in
order to reach again a zero steady state frequency deviation.
Moreover, the total power demand is shared among the areas,
minimizing the total generation costs. More precisely, by
applying the proposed D-SSOSM, the total generation costs
are 10 % less than the generation costs when each area would
produce only for its own demand.

VII. CONCLUSIONS
A distributed suboptimal second order sliding mode con-

trol scheme is proposed to solve an optimal load frequency
control problem in power systems affected by unmatched
disturbances due to fluctuations in load demand. In the paper,
we adopted the model of a power network partitioned into
control areas, where each area is represented by an equivalent
generator including second-order turbine-governor dynamics.
Based on a suitable chosen sliding manifold the system,
constrained to this manifold, possesses an incremental pas-
sivity property that is exploited to prove that the frequency
deviation asymptotically converges to zero and economic
optimality is achieved. An important feature of the proposed
distributed control approach is that each controller does not
require neither the measurement of the power demand nor
load observers, increasing the practical applicability.
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