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Abstract— Motivated by the inadequacy of conventional con-
trol methods for power networks with a large share of renew-
able generation, in this paper we study the (stochastic) passivity
property of wind turbines based on the Doubly Fed Induction
Generator (DFIG). Differently from the majority of the results
in the literature, where renewable generation is ignored or
assumed to be constant, we model wind power generation
as a stochastic process, where wind speed is described by a
class of stochastic differential equations. Then, we design a
distributed control scheme that achieves load frequency control
and economic dispatch, ensuring the stochastic stability of the
controlled network.

I. INTRODUCTION

The supply-demand balance is an essential control objec-
tive in power networks. Indeed, the supply-demand mismatch
leads to frequency deviations from the nominal value, which
eventually may result in stability disruptions [1], [2]. For
this reason, the main control objective in power networks is
the so-called Load Frequency Control (LFC). Additionally,
another key objective is the minimization of the generation
costs, also known as economic dispatch [3]. The economic
dispatch together with the LFC is called in the literature
Optimal LFC (OLFC) (see for instance [3]–[6] and the
references therein). However, due to the growing share of
renewable generation sources in power networks, the con-
ventional control schemes may be not adequate [7].

Different control strategies achieving LFC and OLFC have
been proposed for instance in [8]–[10] and [3], [6], [11],
respectively (see also the references therein). However, in
all these works, only conventional power generation is taken
into account.

A. Motivation and Contributions

Nowadays, renewable generation sources are widespread
in power networks, leading to an inevitable increase of
uncertainties affecting the overall power system and its
stability, resilience and reliability. For this reason, advanced
control methods that guarantee the stability of the power
system also in presence of time-varying renewable sources
are necessary. Indeed, due to the random and unpredictable
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nature of some primary energy sources such as wind, the
dynamic behaviour of renewables can be usually described
by stochastic processes (e.g. Ito calculus), as shown for
instance in [12], [13] for wind power generation. Also, [14]
proposes wind speed models based on Stochastic Differential
Equations (SDEs), which can be useful in wind turbine
models. Differently from [3], [6], [8]–[11] and other relevant
works on the topic, in this paper we couple the wind speed
model introduced in [13] with the model of wind turbines
based on the Doubly Fed Induction Generator (DFIG). Then,
we present a distributed passivity-based control scheme
achieving OLFC and ensuring the stochastic stability of the
power network.

The main contributions of this paper can be summarized
as follows: (i) the OLFC problem for nonlinear power net-
works including the turbine-governor model of conventional
generators and the model of DFIG-based wind turbines
is formulated, where the wind speed is modeled by an
SDE; (ii) sufficient conditions for the stochastic passivity
of the open-loop system are presented, facilitating the in-
terconnection with passive control systems; (iii) a control
scheme is proposed to obtain the passivity property of the
DFIG-based wind turbine; (iv) the stochastic stability of the
power network controlled by the distributed control scheme
proposed in [3] is proved and OLFC objective is achieved.

B. Notation

The set of real numbers is denoted by R. The set of
positive (nonnegative) real numbers is denoted by R>0

(R≥0). Let 0 denote the vector of all zeros and the null
matrix of suitable dimension(s), and 1n ∈ Rn denote the
vector containing all ones. The n × n identity matrix is
denoted by In. Let A ∈ Rn×n be a matrix. In case A is
a positive definite (positive semi-definite) matrix, we write
A > 0 (A ≥ 0). Let |A| denote the matrix A with all
elements positive. The i-th element of vector x is denoted
by xi. A steady-state solution to system ẋ = f(x), is
denoted by x, i.e., 0 = f(x). Let x ∈ Rn, y ∈ Rm be
vectors, then we define col(x, y) := (x> y>)> ∈ Rn+m.
Given a vector x ∈ Rn, [x] ∈ Rn×n indicates the diagonal
matrix whose diagonal entries are the components of x and
sin(x) := col

(
sin(x1), . . . , sin(xn)

)
.

II. PROBLEM FORMULATION

In this section, we introduce the nonlinear power system
model together with the turbine-governor and wind turbine
models. Then, two control objectives are presented: load fre-
quency control and optimal generation (economic dispatch).



TABLE I: Symbols

Pci Conventional power Xmi DFIG magnetizing
generation reactance

Pwi Wind power generation Xri DFIG rotor reactance
Pli Unknown constant load Xsi DFIG Stator reactance
ϕi Voltage angle Xui Ratio between DFIG
ωi Frequency deviation magnetizing and
Vi Voltage stator self-inductance
ιdsi d component of DFIG Rri DFIG Rotor resistance

stator current Rsi DFIG Stator resistance
ιqsi q component of DFIG ψi Damping constant

stator current B Susceptance
ιdri d component of DFIG Ēfi Exciter voltage

rotor current τci Turbine time constant
ιqri q component of DFIG Hi Turbine inertia of

rotor current wind turbine
Vdri d component of DFIG Tmi Mechanical torque of

rotor voltage wind turbine
Vqri q component of λi Tip-speed ratio of

DFIG rotor voltage wind turbine
Vti Terminal voltage ri Rotor radius of

of DFIG wind turbine
fri Rotor angular CQi(λi) Power coefficient of

speed of DFIG wind turbine
fbi Base speed of DFIG ρ Air density
vi Predicted term of ξi Speed regulation

wind speed coefficient
ṽi Stochastic term Ni Neighboring areas

of wind speed of area i
τpi Moment of inertia A Incidence matrix
τvi Direct axis transient of power network

open-circuit constant Lcom Laplacian matrix
Xdi Direct synchronous of communication

reactance uci Control input for
X′

di Direct synchronous conventional generator
transient reactance uwi Control input for

wind turbine

A. Power Network Model

In this subsection, we discuss the model of the consid-
ered power network (see Table I for the description of the
symbols used throughout the paper). The network topology
is represented by an undirected and connected graph G =
(V, E), where V = Vc ∪ Vw = {1, 2, ..., n} is the set of
the control areas and E = {1, 2, ...,m} is the set of the
transmission lines. Specifically, the network comprises nc
conventional (synchronous) generators and nw wind turbine
generators. Then, Vc = {1, 2, ..., nc} is the set of the control
areas including conventional (synchronous) generators and
Vw = {nc + 1, 2, ..., n}, with n = nc + nw, is the set of the
control areas including wind turbine generators. Moreover, in
analogy with [15], [16], we assume that the power network
is lossless and each node represents an aggregated area of
generators and loads. Let A ∈ Rn×m denote the incidence
matrix corresponding to the network topology. Then, the
dynamics of the overall network (known as swing dynamics)
for all nodes (areas) i ∈ V are the following (see also [3],
[6], [15], [16] for further details):

θ̇ = A>ω
τpω̇ = −ψω + P − Pl −AΥ(V ) sin(θ)

τvV̇ = −χdE(θ)V + Ēf ,

(1)

where ω, V : R≥0 → Rn, P : R≥0 → Rn is defined as
P := col(Pc, Pw), with Pc : R≥0 → Rnc , Pw : R≥0 → Rnw

denoting the vector of the power generated by conventional
and wind turbine generators, respectively, θ : R≥0 → Rm de-
notes the vector of the voltage angles differences, χd ∈ Rn×n
is a diagonal matrix whose diagonal elements are defined as
χdi := Xdi−X ′di, with Xdi, X

′
di ∈ R, τp, τv, ψ, Pl ∈ Rn×n,

and Ēf ∈ Rn. Moreover, Υ : Rn → Rm×m is defined
as Υ(V ) := diag{Υ1,Υ2, ...,Υm}, with Υk := ViVjBij ,
where k ∼ {i, j} denotes the line connecting areas i and j.
Furthermore, for any i, j ∈ V , the components of E : Rm →
Rn×n are defined as follows:

Eii(θ) =
1

χdi
−Bii, i ∈ V

Eij(θ) =−Bij cos(θk) = Eji(θ), k ∼ {i, j} ∈ E
Eij(θ) = 0, otherwise.

(2)

B. Turbine-Governor Model for Conventional (Synchronous)
Generators

In this subsection, we introduce the dynamics of the
turbine-governor typically coupled with conventional (syn-
chronous) generators. Specifically, we express the power
generated by the (equivalent) synchronous generator i ∈ Vc
as the output of a first-order dynamical system describing
the behaviour of the turbine-governor, i.e.,

τciṖci = −Pci − ξ−1i ωi + uci, (3)

where uci : R≥0 → R is the control input and τci, ξi ∈ R>0.
Now, we can write system (3) compactly for all nodes i ∈ Vc
as

τcṖc = −Pc − ξ−1ω + uc, (4)

where uc : R≥0 → Rnc and τc, ξ ∈ Rnc×nc .
Now, as it is customary in the power systems literature (see

for instance [3], [6], [15]), we assign to the power generated
by the synchronous generator i ∈ Vc, the following strictly
convex cost function:

Jci (Pci) =
1

2
qiP

2
ci + ziPci + ci, (5)

where Jci : R → R, qi ∈ R>0, zi ∈ R, and ci ∈ R for all
i ∈ Vc.

C. DFIG-Based Wind Turbine Generator Model

In this subsection, we introduce the Doubly Fed Induction
Generator (DFIG) dynamics of a wind turbine generator. In
the DFIG-based wind turbine generator, two back-to-back
converters including a rotor side converter and a grid side
converter are used. The rotor side converter controls the rotor
current, while the grid side converter controls the DC link
voltage [17], [18]. Since wind speed affects the generated
power of a wind turbine, it is then important to have a
realistic model of the wind speed. In our model, we consider
that the wind speed at each node i ∈ V is given by the
sum of a predicted constant component vi and a stochastic
component ṽi. Therefore, the Ito calculus framework is
adopted to analyze the DFIG model with stochastic wind



speed and to control the active power generated by the wind
turbine. Before introducing the DFIG dynamics, we recall
the definition of stochastic differential equation through the
Ito calculus framework [19], [20].

Definition 1: (Stochastic differential equation). A
stochastic differential equation (SDE) is defined as follows:

dx(t) = f(x, u)dt+ g(x)dβ(t), (6)

where f(x, u) ∈ RN and g(x) ∈ RN×M are locally
Lipschitz, x(t) ∈ RN is the state vector of the stochastic
process, u(t) ∈ RP is the input of the system and β(t) ∈ RM
is the standard Brownian motion vector.

Now, according to [17], [18], the dynamics of the DFIG-
based wind turbine generator i ∈ Vw are given by

ι̇dsi =
fbi
Ki

(
−RsiXriιdsi + (Ki +X2

mifri)ιqsi +RriXmi

ιdri +XmiXrifriιqri +XriVti −XmiVdri

)
:= hdsi(xi) + bsiVdri

ι̇qsi =
fbi
Ki

(
− (Ki +X2

mifri)ιdsi −RsiXriιqsi

−XmiXrifriιdri −XmiVqri +RriXmiιqri

)
:= hqsi(xi) + bsiVqri

ι̇dri =
fbi
Ki

(
RsiXmiιdsi −XsiXmifriιqsi −RriXsiιdri

+ (Ki −XsiXrifri)ιqri −XmiVti +XsiVdri

)
:= hdri(xi) + briVdri

ι̇qri =
fbi
Ki

(
XsiXmifriιdsi +RsiXmiιqsi + (XsiXrifri

−Ki)ιdri −RriXsiιqri +XsiVqri

)
:= hqri(xi) + briVqri

ḟri =
1

2Hi

(
Tmi(ṽi)−Xmi(ιdsiιqri − ιqsiιdri)

)
:= hfri(xi)

Pwi =−Xuiιqrifri

:= ζi(xi),
(7)

where ιdsi, ιqsi, ιdri, ιqri, Vdri, Vqri, fri, ṽi, Pwi : R≥0 →
R, xi : R≥0 → R6 is the state vector of DFIG
defined as xi := col(ιdsi, ιqsi, ιdri, ιqri, fri, ṽi), and
bsi, bri ∈ R are defined as bsi := − fbiKi

Xmi and bri :=
fbi
Ki
Xsi. Also, hdsi, hqsi, hdri, hqri, hfri, ζi : R6 → R,

Vti, fbi, Xmi, Xri, Xsi ∈ R, Rsi, Rri, Hi ∈ R>0, and Ki ∈
R is defined as Ki := XsiXri−X2

mi. Moreover, Tmi : R→
R≥0 is defined as Tmi(ṽi) := 1

2ρπr
3
iCQi(λi)(vi + ṽi)

2 with
vi ∈ R, λi, ρ, ri ∈ R>0, CQi : R>0 → R>0. Now, let the
stochastic term of wind speed ṽi be modeled by a SDE as
in [14], i.e.,

dṽi = −µwiṽidt+ σwiṽidβ, ∀i ∈ Vw, (8)

where µwi and σwi are positive constant parameters. Then,
we can rewrite (7) and (8) compactly for all nodes i ∈ Vw

as

dx = (Hg(x) +Buuw)dt+G(x)dβ(t)

Pw = ζ(x),
(9)

where x : R≥0 → R6nw is defined as x := col(x1, . . . , xnw
),

uw : R≥0 → R2nw with uwi : R≥0 → R2 de-
fined as uwi := col(Vdri, Vqri), β : R≥0 → R6nw is
the standard Brownian motion vector. Furthermore, Hg :
R6nw → R6nw is defined as Hg(x) := col

(
Hg1, . . . ,Hgnw

)
with Hgi(xi) := col

(
hdsi(xi), hqsi(xi), hdri(xi), hqri(xi),

hfri(xi),−µiṽi
)
, G : R6nw → R6nw×6nw is defined

as G(x) := blockdiag
(
G1, . . . , Gnw

)
with Gi(x) :=

diag(0, 0, 0, 0, 0, σwiṽi), ζ : R6nw → Rnw is defined as
ζ(x) := col(ζ1, . . . , ζnw

) and Bu ∈ R6nw×2nw is de-
fined as Bu := blockdiag

(
Bu1, . . . , Bunw

)
with Bui :=

col
(
(bsi 0), (0 bsi), (bri 0), (0 bri),02×2

)
.

Now, we assign to the power generated by the wind turbine
i ∈ Vw, the following strictly concave utility function:

Jwi (Pwi) = −1

2
qiP

2
wi + ziPwi + ci, (10)

where Jwi : R → R, qi ∈ R>0, zi ∈ R, and ci ∈ R for
all i ∈ Vw. Note that qi and zi are selected in order to take
into account the value of the maximum power that the wind
turbine can generate given the predicted wind speed vi.

D. Control Objectives

In this subsection, we introduce the main control objec-
tives of this work. The first objective concerns the asymptotic
regulation of the frequency deviation to zero, i.e.,

Objective 1: (Load Frequency Control).

lim
t→∞

ω(t) = 0n. (11)
Besides improving the stability of the power network by

regulating the frequency deviation to zero, advanced control
strategies additionally aim at reducing the costs associated
with the power generated by the conventional synchronous
generators and increasing the utilities associated with the
power generated by the wind turbines. Therefore, we intro-
duce the following optimization problem:

min
P

J(P )

s.t.
∑
i∈V

P̄i − Pli = 0,
(12)

where J(P ) =
∑
i∈Vc J

c
i (Pci) −

∑
i∈Vw J

w
i (Pwi) =

1
2P
>QP + Z>P + 1>nC with Jci (Pci), Jwi (Pwi) given

by (5), (10), respectively, Also, Q ∈ Rn×n, Z,C ∈ Rn
are defined as Q := diag(q1, . . . , qnc

, qnc+1, . . . , qnc+nw
),

Z := col(z1, . . . , znc ,−znc+1, . . . ,−znc+nw), C :=
col(c1, . . . , cnc ,−cnc+1, . . . ,−cnc+nw), respectively. In this
regard, [6, Lemma 2], [15, Lemma 3] show that it is
possible to achieve zero steady-state frequency deviation and
simultaneously minimize the objective function J(P ) in (12)
when the load Pl is constant. More precisely, when the load
Pl is constant, the optimal value of P , which allows for
zero steady-state frequency deviation and minimizes (at the



steady-state) the objective function J(P ) in (12), solving the
optimization problem (12), is given by:

P opt = Q−1
(1n1>n (Pl +Q−1Z)

1>nQ
−11n

− Z
)
, (13)

where P opt := col(P opt
c , P opt

w ). This leads to the second
objective, i.e., minimization of J(P ) in (12), which is also
known as economic dispatch or optimal generation [6], [15].
Then, the second goal concerning the economic dispatch or
optimal generation is defined as follows:

Objective 2: (Economic dispatch).

lim
t→∞

P (t) = P opt, (14)
with P opt given by (13).

We assume now that there exists a steady-state solution to
the considered power network model (1), (4) and (9).

Assumption 1: (Steady-state solution). There exists a
constant input (ūc, ūw) and a steady-state solution
(θ̄, ω̄, V̄ , P̄ , x̄) to (1), (4) and (9) satisfying

0 = A>ω̄
0 = −ψω̄ + P̄ − Pl −AΥ(V̄ ) sin(θ̄)

0 = −χdE(θ̄)V̄ + Ēf

0 = −P̄c − ξ−1ω̄ + ūc

0 =
(
Hg(x̄) +Buūw

)
dt+G(x̄)dβ.

(15)

Additionally, (15) holds also when ω̄ = 0 and P̄ = P opt,
with P opt given by (13).

Note that the stochastic and deterministic terms of the SDE
(8) at the equilibrium point are identical to zero. Thus, the
steady-state solution in (12) and (15) can be considered in
the deterministic sense. In the next section, we present the
passivity properties for the power network, turbine-governor
and wind turbine. To this end, in analogy with [6], [15], the
following assumption is required:

Assumption 2: (Steady-state voltage angle and ampli-
tude). The steady-state voltage V̄ ∈ Rn and angle difference
θ̄ ∈ Rm satisfy

θ̄ ∈ (−π
2
,
π

2
)m,

χdE(θ̄)− diag(V̄ )−1|A|Υ(V̄ ) diag(sin(θ̄))

diag(cos(θ̄))−1 diag(sin(θ̄))|A|> diag(V̄ )−1 > 0.
(16)

Note that Assumption 2 is usually verified in practice, i.e.,
the differences in voltage (angles) are small and the line
reactances are greater than the generator reactances [6], [15].

III. OPTIMAL LOAD FREQUENCY CONTROL

In this section, we present the passivity properties for the
power network, turbine-governor and wind turbine. Then, we
design a controller to achieve Objectives 1 and 2.

A. Incremental Passivity of Power Network and Turbine-
Governor

In this subsection, we recall from the literature the in-
cremental passivity of the power network and the turbine-
governor model. In analogy with [15, Lemma 2], [3,

Lemma 3], the incremental passivity of system (1) is obtained
via the following lemma.

Lemma 1: (Incremental passivity of system (1)). Let
Assumptions 1, 2 hold. System (1) is incrementally passive
with respect to

S1 =− 1>nΥ(V ) cos(θ) + 1>nΥ(V̄ ) cos(θ̄) +
1

2
V >DV

−
(
Υ(V̄ ) sin(θ̄)

)>
(θ − θ̄)− Ēfd(V − V̄ )

− 1

2
V̄ >DV̄ +

1

2
(ω − ω̄)>τp(ω − ω̄),

(17)

and supply rate (ω − ω̄)>(P − P̄ ), where the steady-state
solution (θ̄, V̄ , ω̄) satisfies (15) and D is a diagonal matrix
with Dii =

1−Bii(Xdi−X′
di)

Xdi−X′
di

.
Proof: The proof follows from [15, Lemma 2] and [3,

Lemma 3] and is omitted due to space limitations.
Now, we consider the following controller proposed in [3],

[6] for the turbine-governor i ∈ Vc

τδiδ̇i =− δi + Pci,

uci = δi,
(18)

where δi : R≥0 → R and τδi ∈ R>0. Then, in analogy
with [3, Lemma 5] the incremental passivity of system (3)
in closed-loop with (18) is obtained via the following lemma.

Lemma 2: (Incremental passivity of (3), (18)). Let As-
sumption 1 hold. System (3) with controller (18) is incre-
mentally passive with respect to

S2i =
τciξi

2
(Pci − P opt

ci )2 +
τδiξi

2
(δi − δ̄i)2, (19)

and supply rate −(Pci − P opt
ci )ωi, where the steady-state

solution (P opt
ci , δ̄i) satisfies (15) and

0 =− δ̄i + P opt
ci , (20)

with P opt
ci given by (13).

Proof: See [3, Lemma 5].

B. Stochastic Passivity of DFIG-Based Wind Turbine

In this subsection, we propose a control scheme to control
the active power generated by wind turbine. Then, we show
that the DFIG-based wind turbine (7), (8) in closed-loop
with the proposed controller is stochastically passive. Before
introducing the DFIG controller, we recall the definitions of
Ito derivative and stochastic passivity [19], [20].

Definition 2: (Ito derivative). Consider a function S(x),
which is twice continuously differentiable. Then, LS(x)
denotes the Ito derivative of S(x) along the SDE (6), i.e.,

LS(x) =
∂S(x)

∂x
f(x, u) +

1

2
tr{g>(x)

∂2S(x)

∂x>∂x
g(x)}. (21)

Definition 3: (Stochastic passivity). Consider system (6)
with output y = η(x). Assume that the deterministic and
stochastic terms of the SDE (6) at the equilibrium point are
identically zero, i.e., f(x̄, ū) = g(x̄) = 0. Then, system (6)
is said to be stochastically passive with respect to the supply



rate u>y if there exists a twice continuously differentiable
positive semi-definite storage function S(x) satisfying

LS(x) ≤ u>y, ∀(x, u) ∈ RN × RP . (22)
Now, consider the following controller for the DFIG-based

wind turbine generator i ∈ Vw:

Vdri =− Li(xi)
(
K̄1i(xi) + K̄2i(xi) + K̄3i(xi) + x̄>i Πix̄i

+ x̄>i Πixi + x̄>i ΨiHgi(xi)
)

(23a)

Vqri =− Li(xi)
(
D1i(xi)ωi +D2i(xi)δi +D3i(xi)

)
(23b)

τδiδ̇i =− δi + Pwi, (23c)

where

Li(xi) =
Xri

Xri(ιdri − ῑdri)−Xmi(ιdsi − ῑdsi)
K̄1i(xi) = ρπr2iCQi((fri − f̄ri)v2i + vi(fri − f̄ri)2)

+ (fri − f̄ri)2

K̄2i(xi) =
(
ιdsi −

Xmi

Xsi
ιdri

)
Vti + ωi(Pwi − P opt

wi )

K̄3i(xi) = 2f̄riXmi(ιdsiιqri − ιqsiιdri)

+
(
Rri

Xmi

Xri
+Rsi

Xmi

Xsi

)
ιdriιdsi

+
(
Rri

Xmi

Xri
+Rsi

Xmi

Xsi

)
ιqriιqsi

Πi = diag
(
Rsi, Rsi, Rri, Rri, 0, 0

)
Ψi = diag

(Kiῑdsi
fbiXri

,
Kiῑqsi
fbiXri

,
Kiῑdri
fbiXsi

,
Kiῑqri
fbiXsi

, 0, 0
)

D1i(x) =−Xuiιqrifri +Xuiῑqrif̄ri,

D2i(x) = (Pwi − P opt
wi )δi

D3i(x) = (δi − Pwi)2 − (Pwi − P opt
wi )P opt

wi ,

Note that the controller (23) requires the information of x̄i
and P opt

wi which can be obtained by solving (15) and (13),
respectively, where the loads are assumed to be constant.
Also, the idea behind the design of the controller (23) is
using passivity based control method. In order to obtain the
stochastic passivity of (7), (8), (23), we need to consider the
following assumptions on the wind turbine and speed.

Assumption 3: (Condition on the rotational speed). The
rotational speed fri of the wind tubine i ∈ Vw is bounded
as |fri| < γ̄i, γ̄i ∈ R>0.

Assumption 4: (Condition on the parameters of (8)).
The wind speed parameters in (8) satisfies

µwi + f̄ri >
σ2
wi

2
+ vi + γ̄i, i ∈ Vw. (24)

Note that Assumption 3 is true in practice, since the rota-
tional speed of a wind turbine is limited by the mechanical
characteristics of the turbine itself, which is indeed usually
equipped with mechanical breaks that avoid high rotational
speed. Assumption 4 is instead a sufficient technical condi-
tion to establish the stochastic passivity of the wind turbine.

Now, the stochastic passivity of DFIG-based wind turbine
dynamics (7), with wind speed dynamics (8) and controller
(23) is obtained via the following proposition.

Proposition 1: (Stochastic passivity of (7), (8), (23)). Let
Assumptions 3 and 4 hold. System (7), (8) in closed-loop
with (23) is stochastically passive with respect to

S3i =
Ki

2fbiXri

(
(ιdsi − ῑdsi)2 + (ιqsi − ῑqsi)2

+ (ιdri − ῑdri)2 + (ιqri − ῑqri)2
)

+ 2Hi(fri − f̄ri)2

+ ρπr3iCQiṽ
2
i +

τδi
2

(δi − δ̄i)2,
(25)

and supply rate −ωi(Pwi − P opt
wi ), where the steady-state

solution (x̄i, P
opt
wi , δ̄i) satisfies (15) and

0 =− δ̄i + P opt
wi , (26)

with P opt
wi given by (13).

Proof: See [21, Proposition 1].

C. Closed-loop analysis

In this subsection, we show that the closed-loop system
is stochastically stable. First, we recall the definition of
(asymptotic) stochastic stability [19], [20].

Definition 4: ((Asymptotic) stochastic stability). System
(6) is (asymptotically) stochastically stable if a twice con-
tinuously differentiable positive definite Lyapunov function
S : RN −→ R>0 exists such that LS is (negative definite)
negative semi-definite.
Now, in order to achieve Objective 2, we modify controllers
(18) and (23c) as follows (see [3], [6]):

τδ δ̇ = −δ+P−blockdiag(ξ−1, Inw)QLcom(Qδ+Z), (27)

where δ : R≥0 → Rn, τδ ∈ Rn×n and Lcom ∈ Rn×n is
the Laplacian matrix associated with a connected commu-
nication network. More precisely, the term Qδ + R in (27)
reflects the marginal cost associated with J(P ) in (12) and
Lcom(Qδ +Z) represents the exchange of such information
among different areas. In the following theorem, we show
that the closed-loop system (1), (4), (9), (23a), (23b), (27) is
stochastically stable and Objectives 1 and 2 are attained.

Theorem 1: (Closed-loop analysis). Let Assumptions 1–
4 hold. Consider system (1), (4), (9) with controller (23a),
(23b), (27). Then, the solutions to the closed-loop sys-
tem starting sufficiently close to (θ̄, ω̄ = 0, V̄ , P opt, x̄, δ̄)
stochastically converge to the set where ω̄ = 0 and P̄ =
P opt, i.e., achieving Objectives 1 and 2.

Proof: See [21, Theorem 1], where the proof follows
from Lemmas 1, 2, Proposition 1 and LaSalle’s principle.

IV. SIMULATION RESULTS

In this section, the simulation results show excellent
performance of the proposed control scheme. We consider
a power network partitioned into four control areas which is
shown in [22, Fig. 1], where areas 1, 2 and 3 include con-
ventional generation, while area 4 includes wind generation.
The system parameters are provided in [21, Table II], where
the parameters are equal to [17, Table I] and [22, Table II],
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Fig. 2: Generated power in each area.

the nominal frequency and power base are chosen equal to
120π rad/s and 1000 MVA, respectively.

The system is initially at the steady-state with constant
load Pl = col(1.3, 2, 1.3, 0.5). Then, at the time instant
t = 5 s the load increases to Pl = col(1.4, 2.1, 1.4, 0.55) and
the wind speed varies according the stochastic differential
equation (8). Fig. 1 shows that the frequency deviation in
each area converges to zero after a transient time. Also, we
notice from Fig. 2 that after t = 5 s the generated power
in each area converges to the corresponding optimal value.
Specifically, we observe that the additional power demand
is supplied by the conventional generators while the wind
turbine (Area 4) generates the maximum possible power
given a certain wind speed.

V. CONCLUSION

In this paper, we have verified the (stochastic) passivity
of the power network including conventional synchronous
generators and wind turbines, where the wind speed is
described by a stochastic differential equation and presented
a distributed control scheme to ensure the stochastic stability
of the system, achieving optimal load frequency control.
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