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Abstract: This paper proposes a decentralized Second Order Sliding Mode (SOSM) control
strategy for Automatic Generation Control (AGC) in power networks, where frequency reg-
ulation is achieved, and power flows are controlled towards their desired values. This work
considers a power network partitioned into control areas, where each area is modelled by an
equivalent generator including second order turbine-governor dynamics, and where the areas
are nonlinearly coupled through the power flows. Asymptotic convergence to the desired state is
established by constraining the state of the power network on a suitable sliding manifold. This is
designed relying on stability considerations made on the basis of an incremental energy (storage)
function. Simulation results confirm the effectiveness of the proposed control approach.

Keywords: Sliding mode control, Decentralized control, Stability of nonlinear systems, Power

systems stability.

1. INTRODUCTION

As a result of power mismatch between generation and
load demand, the frequency in a power system can deviate
from its nominal value. Whereas primary droop control
is utilized to prevent destabilization of the network, the
frequency is controlled back to its nominal value by the
so-called ‘Automatic Generation Control’ (AGC). In an
AGC scheme, each Control Area (CA) determines its Area
Control Error (ACE) and changes the setpoints to the
governor accordingly to compensate for local load changes
and to maintain the scheduled tie line power flows. Due
to the increasing share of renewable energy sources, it is
however unsure if the existing implementations are still
adequate (Apostolopoulou et al. (2016)).

To cope with the increasing uncertainties affecting a CA
and to improve the controllers performance, advanced
control techniques have been proposed to redesign the
conventional AGC schemes, such as Model Predictive
Control (Ersdal et al. (2016)), adaptive control (Zribi
et al. (2005)) and fuzzy control (Chang and Fu (1997)).
In this work we propose a new control strategy based
on the Sliding Mode (SM) control methodology, which
has been previously used in the literature to improve
the conventional AGC schemes (Mi et al. (2013), Dong
(2016)), possibly together with fuzzy logic (Ha (1998)),
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genetic algorithms (Vrdoljak et al. (2010)), disturbances
observers (Mi et al. (2016)), linear matrix inequalities
(LMI) based control techniques (Prasad et al. (2015)) and
passivity based approach (Cucuzzella et al. (2017)).

SM control is a well known robust control approach, espe-
cially useful to control systems subject to modelling uncer-
tainties and external disturbances (Utkin (1992), Edwards
and Spurgen (1998)). This also holds for Second Order SM
(SOSM) control (Bartolini et al. (1999)), where not only
the sliding variable but also its first time derivative are
steered to zero in a finite time, thus providing, under suit-
able working conditions, an intrinsic chattering alleviation
effect (Utkin and Lee (2006)).

In this paper, we adopt the model of a power network par-
titioned into control areas, having an arbitrarily complex
and meshed topology. The generation side is modelled by
an equivalent generator including second order turbine-
governor dynamics, where the proposed decentralized con-
trol scheme continuously adjusts the governor set point. To
be able to control the power system using continuous con-
trol signals, which can be beneficial in field implementa-
tions, the well known Suboptimal SOSM (SSOSM) control
algorithm (Bartolini et al. (1998a)) is exploited. Moreover,
the convergence to the sliding manifold is obtained neither
measuring the power demand, nor using load observers.

When the nonlinear power system is constrained to the
designed sliding manifold, the convergence towards the de-
sired state is established relying on a suitable incremental
energy function (Trip et al. (2016)) and Lyapunov argu-



ments. Indeed, an incremental energy function based sta-
bility analysis suggests the design of the sliding manifold.
Finally, the case study considered in the paper shows the
effectiveness of the proposed controller and demonstrates
that the combined use of SM control and other nonlinear
control techniques can provide new insights and control
strategies.

2. NETWORK MODEL

Consider a power network consisting of n interconnected
control areas. The network topology is represented by a
connected and undirected graph G = (V, &), where the
nodes V = {1,...,n}, represent the control areas and the
edges € CV x V ={l,...,m}, represent the transmission
lines connecting the areas. The topology can be described
by its corresponding incidence matrix B € R™*™. Then,
by arbitrary labeling the ends of edge k with a ‘4+’ and a
‘~’, one has that

+1 if 7 is the positive end of k
Bir, = —1 if i is the negative end of k
0 otherwise.

Representing a control area with an equivalent generator
and load, the governing dynamic equations of the i-th node
are the following ! :

0 = fi
1 K,; K,;
i =— =+ fi+ 7Py — =Pu
fim = g it Pa= 2P "
K,; v,V
- sz ;{V] sin (6; — J;),
pi jeA; ij

where A; is the set of nodes connected to the i-th node by
transmission lines. Note that we assume that the network
is lossless, which is generally valid in high voltage trans-
mission networks where the line resistance is negligible.
Moreover, P, in (1) is the power generated by the i-
th plant, and it can be expressed as the output of the
following second order dynamic system that describes the
behaviour of both the governor and the turbine:

. 1 1
Py =——Py+ Py
Ty T
. 1 1 1 (2)
Poi=— o7 fi— 77 Poi + 7w
! Ring‘f Tyi* " Ty

The main symbols used in systems (1) and (2) are de-
scribed in Table 1.

To study the power network we write system (1) and the
turbine-governor dynamics in (2) for all nodes i € V as

in=B"f
T,K,;'f=—K,'f+ P, — Py — BI'sin(n)
T,P,=— P, + P,
Tng =—R'f =Py +u,
where n = BT6 € R™, f € R", P, € R", P, € R",
I' = diag{T'1,..., 'y}, with Ty = V;V;/X;;, sin(n) =

(sin(m),...,sin(n,))?, P4 € R™ and u € R™. Matrices
Tp,1:, T4, Kp, R are suitable n x n diagonal matrices.

3)

L For the sake of simplicity, the dependence of the variables on time
t is omitted througout this paper.

Table 1. Description of the used symbols

Symbol  Description

& Voltage angle

fi Frequency deviation

Py; Turbine output power

Py; Governor output

Tpi Time constant of the control area
Th; Time constant of the turbine
Tyi Time constant of the governor
Kpi Gain of the control area

R; Speed regulation coefficient
Vi Constant voltage

Xij Line reactance

U; Control input

Py; Unknown power demand

To permit the controller design in the next sections,
the following assumption is made on the disturbances
(unknown loads) and the available measurements:

Assumption 1. (Available measurements.) The vari-
ables f;, Py;, P,; and the power flow (BI'sin(n)); are locally
available at control area i. The unmatched disturbance Py
is unknown, constant and can be bounded as

|Pai| < D, (4)

where D; is a positive constant available at control area 1.

3. PROBLEM FORMULATION

In this section we formulate two objectives of automatic
generation control. The first objective is concerned with
the steady state frequency deviation.

Objective 1. (Frequency regulation)

lim /(1) = 0. (5)
The second objective is to maintain the scheduled net
power flows in a control area, where the net power flow
is the total power flow exchanged by a control area.

Objective 2. (Maintaining scheduled net power flows)
tlim BI'sin(n(t)) = BPy, (6)

where BP; is the desired net power flow. In case the power
network does not contain cycles, Objective 2 is equivalent
to limy oo I'sin(n(t)) = Py, such that the power flow on
every line is identical to its desired value (see Remark 3
in Section 5). To be able to satisfy objectives 1 and 2,
we make the following assumption on the feasibility of the
control problem.

Assumption 2. (Feasibility) For a given constant Py,
there exist a @ and state (f = 0,7, Py, P,) that satisfies

0= 8%
0=-K,'0+ P, — Py — Bl'sin(7) o
0=-—P,+P,

0=—-R'0-P,+7,
where Bl sin(7) = BPj.



We are now in a position to formulate the control problem:

Let Assumptions 1 and 2 hold. Given system (3), design
a decentralized control scheme, providing a continuous
control input, capable of guaranteeing that the controlled
system is asymptotically stable with zero steady state fre-
quency deviation, maintaining, at the steady state, the
scheduled (net) power flows.

4. THE PROPOSED SOLUTION

In this section the well established SSOSM controller pro-
posed in Bartolini et al. (1998a) is applied, in a decentral-
ized way, to the power network augmented with an addi-
tional state variable § € R™ that enables a further tuning
of the transient behaviour of the system. Its dynamics is
Ty = —6 + P,. (8)
We select the sliding variables vector ¢ € R"™ as
g = le + MQPt + Mgpg =+ M49 =+ M5B(F sm(n) — Ff),
(9)
M5 are constant n xn diagonal matrices. The
M5 follow from the stability

where My, ...
permitted values for My, ...
analysis in Section 5.

Remark 1. (Local measurements) Because My, ..., Ms
are diagonal matrices, each sliding variable o; is defined
by only local variables at node 1.

We now continue by describing the controller that guar-
antees the convergence to the sliding manifold ¢ = ¢ = 0.
Since the system relative degree? is equal to 1, then, in
order to obtain a continuous control input, the SSOSM
control algorithm can be applied by artificially increasing
the relative degree of the system. To do this, we define
two auxiliary variables &1 = ¢ and & = &, and build the
so-called auxiliary system as follows

&i=6
&= ¢+ gw (10)

where &5 is not measurable, since, according to Assumption
1, P; is unknown. Bearing in mind (9) and that & = ¢+gw,
it follows that ¢ € R™ and g € R™*"™ are given by

o= (MiT, 2 4 MyR™\T VT, = MRV
—|—M3R‘1Tg_2)f - (MlK T2+ MyK,R™'T, \T; !
M KT T — MoTy 2 + My T M Ty
—|—M4T_2)Pt " (MlK T — MyT
—M TV M T, + MyT T ) P
+(M2Tt - MyT; V)Tt (MAT
+M3R—1T—1) (K TP+ K, T—lBF sin(n))

—MlK T,y 1Bl 4 sin(n) + M5Bl
+M,T, 9
g= Mngil.

sm( )

(11)

2 The relative degree is the minimum order r of the time derivative
O',ET) ,i € {1,...,n}, of the sliding variable associated to the i-th node

in which the control u;,¢ € {1,...,n}, explicitly appears.

Note that, ¢, g are uncertain due to the presence of the
unmeasurable power demand P, and possible parameter
uncertainties. Referring to condition (4), and assuming
that the parameter uncertainties are bounded, then ¢ and
g can be bounded as

|¢l| S (bia Gmin,i S Gii S Gmaxi, ieV (12)
®;, Gmin;, and Gnax,, being positive constants. However,
if the bounds ®;, Gmin; and Gmax, cannot be a-priori
estimated, the adaptive version of the SSOSM algorithm

proposed in Incremona et al. (2016) can be used to
dominate the effect of the uncertainties.

To steer &1, and s, to zero in a finite time even in presence
of the uncertainties, the SSOSM algorithm (Bartolini et al.
(19984a)) is used. Consequently, the control law for the i-th
node is given by

1
w; = _ainaxl sgn (5 61 maxl) ) (13)
with
(0¥ 4P,
Winax; > L L , 14
e e (a: Gmini 3Gmini - Of; Gmaxi ) ( )

SGminv
1 = . 1
e 0170 (0. ) (15)

In (13) the extremal values & max, can be detected by
implementing for instance a peak detection as in Bartolini
et al. (1998b). Moreover, note that the discontinuous
SSOSM control law (13) only affects &,, and the control
u; fed into the governor of the node i is continuous.

5. STABILITY ANALYSIS AND MAIN RESULT

In this section we study the stability of the proposed
control scheme. In order to prove stability we formulate
two (nonrestrictive) assumptions.
Assumption 3. (Desired sliding manifold) Let M; > 0,
My > 0, M3 > 0 diagonal matrices and let My and M5 be
defined as

My =— (M + M)

Ms = M X, (16)
where X is a diagonal matrix satisfying 3
0<T,K,' — XT,K,'Bl[cos(n)|B" K, 'T, X, (17)
and
0< K, 1—%KP1XK !
(18)

3 (TnglXBF[Cos(n)}BT
+ BF[cos(n)]BTXKngp).

Remark 2. (Required information on the network
topology) The value of X needs to be calculated once
for the whole network and can be determined offline. The
obtained value of X;; needs then to be transmitted to
control area i. Since all M; are diagonal, the proposed
control scheme is fully decentralized once the value of X
is obtained. We note that (17) and (18) have the form of
an algebraic Riccati inequality and a Lyapunov inequality
respectively and efficient numerical methods exist to find a
diagonal solution X. To facilitate a distributed controller

denote  the matrix

,cos(nm)}-

3 Let  [cos(n)] m X m

diag{cos(m1), ...

diagonal



design that improves the scalability of the proposed solu-
tion, we provide a distributed method to determine a value
of X satisfying (17) and (18) in Subsection 5.1.

The following assumption is made on the differences of
voltage angles at steady state that is generally satisfied
under normal operating conditions of the power network.

Assumption 4. (Steady state voltage angles) The dif-

ferences in voltage angles in (7) satisfy
_ T Tom
ne (_77 *)

22 (19)

The restrictions on M; and 77 are required to apply
LaSalle’s invariance principle in Theorem 1.

Lemma 1. (Convergence to the sliding manifold)
Let Assumption 1 hold. System (3) augmented with (8)
converges in a finite time ¢, to the sliding manifold where

Py =— M3 " (Myf + MyP; + My
+ M5B(Tsin(n) — Py)).

Proof. The proof is omitted due to space constraints.

(20)

Exploiting relation (20), the equivalent system on the
sliding manifold is as follows:
in=B"f

Tpr_lf:—Kp_lf—l—Pt—ﬁd—BI‘sin(n)

M M3T, Py = — MY (Mo + M3) Py — My My0 — f
— My ' M;B(T'sin(n) — Py)
Tgé =—0+ P
oc=20,
(21)

where we include the auxiliary system (8).

As a_consequence of Assumption 2 there exists a (f =
0,7, Py, 0) satisfying
0=5%0

0=—K,'0+ P, — Py — BIsin(7)

0=— M;"(My+ M3)P; — M; ' M40 — 0 (22)
— M ' MsB(T'sin(5) — Py)

0=-0+P,

=0,

where in (7), P, =0 = .

To show the desired convergence properties of the equiva-
lent system (21) we consider the function

1 _
S(f,n, P, 0) = éfTTpr L — 1T Tcos(n)

+ fTT, K, X BT sin(n)
1 23

+ §PtTMf1M3TtPt (23)
1

+ §eTMfl(M2 + M3)Ty0,

that consists of an energy function of the power network

(Trip et al. (2016)), a cross-term and common quadratic

functions for the states of the turbine and the auxiliary

dynamics. The stability of the system is then proven

using an incremental storage function that is the Bregman

distance (Bregman (1967)) associated to the function (23).

The Bregman distance associated to S is defined as (notice
the use of calligraphic S):

S= S(fanv—PDe) - S(Ovﬁ7pt7é)
as T
oy _ 5 =
(f ) an 77(:775 7)
a8 as|t  _
8Pt PEPt Py Pt) - % 0(:057 9)
=3 fTTpK;1 f
—17r cos(n) + 17r cos(m) — (T sin(ﬁ))T(n -7)
+ fTT, K, " XB(Isin(n) — I'sin(7))
1 _ _
+3 —(P, — P))" M M3T,(P; — P))
1 _
5(9 N M (My + M3)Ty(0 — 0),

(24)
where (0,7, Py, 0) satisfies (22). We remark that the Breg-
man distance S is equal to S minus the first order Taylor
expansion of S around (0,7, P, ). We now derive two
useful properties of S, namely that S has a local minimum
at (0,7, P¢,0) and that S < 0.

Lemma 2. (Local minimum of §) Let Assumptions 2-5
hold. Then S has a local minimum at (0,7, Py, 0).

Proof. Since § is a Bregman distance associated to (23)
it is sufficient to show that (23) is convex at the point
(0,7, Py, 0) in order to infer that S has a local minimum
at that point. We consider therefore the Hessian ma-
trix H(S(f,n, P;,0)), evaluated at (0,7, P¢,6), which we
briefly denote H(S). A straightforward calculation shows
that

H(S) = ﬁ.? J\OA 7 25)
with
S LK, TK X B lcos(7)]
[[COS( )IT BTXK T, T'[cos(7)] ] (26)
M = [Ml_lMth 0 } 27
0 My (My + M3)Ty ]

It is immediate to see that M > 0, such that H(S) > 0
if and only if @ > 0. Since I'[cos(7])] > 0 as a result of
Assumption 4, it is sufficient that the Schur complement
of block T'[cos(n)] ‘n _ of matrix @ satisfies

0<T,K, ' — XT,K, ' Bl[cos(m)|B" K, 'T,X. (28)
The claim then follows from Assumption 3. |

Lemma 3. (Evolution of S) Let Assumptions 2-5 hold.
Then S < 0.

Proof. One can verify that
T

S f f
o= <BF(Sin(77) - Sin(n))> g (lST(SiH(??) - Sin(ﬂ)))
= (P = 0)" My (Mo + Ms)(P, = 0), 9)
29



where we exploited (22) and define

P K, ! — TpKl;lXLiF[cos(n)]BT $K'X
XK, X

Since X > 0, it follows that S < 0 if the Schur complement

of block X of matrix 3(Z + Z7) satisfies

(30)

1
-1 -1 -1
0<K,' - K, XK,

1
- §(Tpr_1XBF[cos(77)]BT + BF[COS(n)]BTXKp_lTp).
(31)
The claim then follows from Assumption 3. |

Now, we can prove the main result of this paper concerning
the evolution of the augmented system controlled via the
proposed SSOSM control strategy.

Theorem 1. (Main result.) Let Assumptions 1-5 hold.
Consider system (3), augmented with the integrators (8)
and controlled via (9)—(15). Then, the solutions of the
closed-loop system starting in a neighbourhood of the
equilibrium (f = 0,7, Py, P;) approach the set where
f = 0 and BTsin(7) = BPy, where BPy is the desired
net power exchanged by the control areas.

Proof. The proof follows from invoking an invariance
principle and is omitted due to space constraints.

Remark 3. (Acyclic network topologies.) In case the
topology of the power network does not contain any cycles,
we have that the corresponding incidence matrix B has
full column rank and therefore has a left-inverse satisfying
BT B = I, such that we can conclude from Theorem 1 that
the system approaches the set where

BI'sin() = BP; = TI'sin(7) = Py. (32)

5.1 A distributed method to determine X.

In this subsection we provide a distributed method to
determine a possible value of X that satisfies (17) and
(18). For the sake of brevity the corresponding proofs are
omitted.

Lemma 4. (Satisfying (17).) If X = e, K, T, with

e < min ( Tp)
i€V 2Kp2 ZkGNi Fk ’
then (17) is satisfied.
Lemma 5. (Satisfying (18).) If X = e K, T, with

< mi ( Ty ) (34
€2 < min .
i€V \ 3+ 2K Tpi Ypen, Te

(33)

~—

then (18) is satisfied.

From Lemma 4 and Lemma 5 the following corollary is
immediate:

Corollary 1. (Satisfying (17) and (18).) Let
X = erTpfl,
with € = min{e, e}, then (17) and (18) are satisfied.

(35)

The result of this subsection can be used as follows. Every
control area determines an upper bound for e using (33)

Table 2. Network parameters and power de-

mand

Areal Area2 Area3 Area4
Tpi (s) 21.0 25.0 23.0 22.0
Ty (s) 0.30 0.33 0.35 0.28
Ty (s) 0.080 0.072 0.070 0.081
Kpi (Hz p.u.=%) | 120.0 112.5 115.0 118.5
R; (Hz p.u.™1) 2.5 2.7 2.6 2.8
'y (s) 0.1 0.1 0.1 0.1
P4 (0)  (pu.) 0.010 0.014  0.012 0.013
Py, (p-u.) 0.020 0.028 0.024 0.026

and (34), and broadcasts it to the rest of the network.
Using the minimum of all estimated upper bounds of ¢ it
is ensured that Assumption 3 holds.

6. SIMULATION RESULTS

In this section, the proposed control solution is assessed in
simulation by implementing a power network partitioned
into four control areas. The topology of the power network
is represented in Figure 1, where the arrow on each edge
indicates the positive direction of the power flow. The
relevant network parameters of each area are provided in
Table 2, where a base power of 1000 MW is assumed. The
line parameters are y; = 0.54 p.u., 72 = 0.50 p.u. and 3 =
0.52 p.u., while the scheduled power flows are Py = 0.015
p-u., ng = 0.0125 p.u. and Pfg = 0.01 p.u. The matrices
in (9) are chosen as M1 = 10[4, Mg = 14, M3 = 0.1]4,
My = —(My + M3) and M5 = 0514, I; € R*** being
the identity matrix, while the control amplitude Wiax,
and the parameter of, ¢ = 1,...,4, in (13) are selected
equal to 100 and 1, respectively. In simulation, at the
initial time instant ¢ty = Os the system is at the steady
state with power demand Py;(0). Then, at the time instant
t = 2s, the power demand in each area becomes Pg;
(see Table 2). From Figure 2, one can observe that the
frequency deviation converges asymptotically to zero after
a transient during which the frequency drops because
of the increasing load. Moreover, one can note that the
controllers increase the power generation in order to reach

Psy

Fig. 1. Scheme of the considered power network partitioned

‘/'i* V‘* .

Xij] Sin (51 — 53)
The arrows indicate the positive direction of the
power flows through the power network.

into 4 control areas, where P;; =
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Fig. 2. Time evolution of the frequency deviation, power
generation and power flows. The power demand
changes at the time instant t = 2s.

again a zero steady state frequency deviation, maintaining,
at the steady state, the scheduled power flows P on each
line.

7. CONCLUSIONS

A decentralized Suboptimal Second Order Sliding Mode
control scheme is proposed for Automatic Generation
Control (AGC). We considered a power network parti-
tioned into control areas, where each area is modelled by
an equivalent generator including second order turbine-
governor dynamics, and where the areas are nonlinearly
coupled through the power flows. Relying on stability
considerations made on the basis of an incremental energy
(storage) function, a suitable sliding manifold is designed.
Asymptotic convergence is proven to the state where the
frequency deviation is zero and where the power flows are
regulated towards their desired values.
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