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Abstract— In this paper, a novel distributed control strategy
achieving (feasible) current sharing and voltage regulation in
Direct Current (DC) microgrids is proposed. Firstly, the (con-
vex) optimization problem is formulated, with the microgrid’s
steady state equations and/or desired objectives as feasible set.
Secondly, we design a controller, the (unforced) dynamics of
which represent the continuous time primal-dual dynamics of
the considered optimization problem. Then, a passive inter-
connection between the physical plant and the controller is
presented. Furthermore, global asymptotic convergence of the
closed-loop system to the desired steady-state is proved and
simulations successfully confirm the theoretical results.

I. INTRODUCTION

The recent wide spread of renewable energy sources
motivates the design and operation of Direct Current (DC)
microgrids, which are interconnected clusters of Distributed
Generation Units (DGUs), loads and energy storage systems
interacting each other through distribution lines [1]. In order
to guarantee a proper and safe functioning on the power net-
work, voltage stabilization is the main goal to achieve in DC
microgrids [2]. Additionally, to avoid the overstressing of a
source, it is generally desired that the total demand is (fairly)
shared among all the DGUs of the microgrid [3]. However,
in order to permit the DGUs to share the generated current or
power, voltage differences among the nodes of the microgrid
are necessary. As a consequence, it is generally not possible
to achieve the aforementioned objectives simultaneously.

In the literature, several control techniques have been
proposed to regulate the voltages towards the corresponding
desired value (see for instance [4] and the references therein).
On the other hand, some works have proposed consensus-
based control schemes achieving current/power sharing with-
out regulating the voltage (see for instance [5] and the
references therein). Differently from the above mentioned
works, consensus protocols have been recently designed
for achieveing both current sharing and a peculiar form of
voltage regulation, where the average value of the voltages of
the whole microgrid is controlled towards a desired setpoint
(see for instance [3], [6]–[8] and the references therein).
However, regulating only the average voltage may introduce,
in some nodes of the microgrid, large voltage deviations from
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the corresponding nominal value, making this solution not
always adequate in practical applications.

All these considerations motivated us to design a control
scheme aiming to share, among the nodes of the microgrid,
the largest possible amount of total demand in compliance
with the permitted (safe) values of voltage deviations (a
similar control problem is addressed in [9] by synthesizing
a centralized symbolic controller). More precisely, in this
paper, we consider a DC microgrid with buck converters
and loads interconnected through resistive-inductive power
lines. For the considered DC microgrid we propose a novel
distributed control scheme that achieves feasible current
sharing, keeping the (steady-state) voltage at each node
within prescribed desired bounds. This is done by coupling
fundamental concepts from convex optimization and systems
theory, i.e., (continuous) primal-dual dynamics [10]–[12] and
passivity [13]. In analogy with [14], the proposed design
procedure involves the following key steps: (i) The (convex)
optimization problem is formulated and the corresponding
feasible set is defined by the microgrid’s steady state condi-
tions and/or desired objectives. (ii) A dynamic controller,
the (unforced) dynamics of which represent the primal-
dual dynamics of the considered optimization problem is
designed. (iii) After showing the passivity property of the
microgrid and controller, a power-conserving interconnection
between the microgrid and the controller is established
and the (global) asymptotic convergence of the closed-loop
system trajectories to the desired equilibrium point is proved.

II. MICROGRID’S MODEL AND PASSIVITY PROPERTY

In this paper we consider a typical DC microgrid with
n Distributed Generation Units (DGUs) connected to each
other through m resistive-inductive (RL) lines (see [15, Fig.
1] for a schematic electrical diagram of the considered DC
network and Table I for the description of the used symbols).
Each DGU includes a DC-DC buck converter supplying
a “ZI” (constant impedance, constant current) load∗. The
DC load is connected to the so-called Point of Common
Coupling (PCC). The overall DC microgrid is represented
by a connected and undirected graph G = (V, E), where
the nodes, V = {1, ..., n}, represent the DGUs and the
edges, E = {1, ...,m}, represent the lines interconnecting
the DGUs. The microgrid topology is described by its
corresponding incidence matrix B ∈ Rn×m. The ends of
edge k ∈ E are arbitrarily labeled with a + and a −, and the
entries of B are given by Bik = +1 if i is the positive

∗In the presence of also constant power-loads, the results in this paper
hold locally.



TABLE I
DESCRIPTION OF THE USED SYMBOLS

States and input Parameters

Iti Generated current Rti, Lti Filter resistance, inductance
Vi Load voltage Cti Shunt capacitor
Ik Line current Rk, Lk Line resistance, inductance
ui Control input Zli, Ili Load impedance, current

end of k, Bik = −1 if i is the negative end of k, and
Bik = 0 otherwise. Consequently, the overall dynamical
system describing the microgrid behaviour can be written
compactly for all DGUs i ∈ V as

Ltİt = −V −RtIt + u

Lİ = −RI − B>V
CtV̇ = It + BI − Z−1

l V − Il,
(1)

where It, V, u : R → Rn, I : R → Rm and Il ∈ Rn. More-
over, Ct, Lt, Rt, Zl ∈ Rn×n and R,L ∈ Rm×m are positive
definite diagonal matrices, e.g., Ct = diag(Ct1, . . . , Ctn).
Furthermore, let x = [I>t , I

>, V >]> denote the state of sys-
tem (1). Then, for a given constant input u, the corresponding
steady state solution x = [I

>
t , I

>
, V
>

]> to system (1)
satisfies

V = −RtĪt + u (2a)

I = −R−1B>V (2b)

It = −BI + Z−1
l V + Il. (2c)

Before establishing the passivity property of system (1), we
first define the set of all feasible forced equilibria of (1) as
follows

Ep := {(x, u) ∈ R2n+m × Rn|(x, u) satisfies (2)}. (3)

Remark 1: (Unique steady state solution). Given u, there
exists a unique (x, u) ∈ Ep satisfying:

V = (In +RtG)−1 (u−RtIl)
It = G(In +RtG)−1 (u−RtIl) + Il

I = −R−1B>(In +RtG)−1 (u−RtIl) ,

with G := BR−1B> + Z−1
l .

Now, the following result can be proved [16].
Proposition 1: (Property of (1)). Let ud : R→ Rn. The

following statements hold:
(a) System (1) together with u̇ = ud is passive with respect

to the supply rate u>d İt and storage function†

Sp(It, I, V, u) =
1

2
‖İt‖2Lt

+
1

2
‖İ‖2L +

1

2
‖V̇ ‖2Ct

. (4)

(b) Let ud = 0. System (1) converges to the equilibrium
point (x, u) ∈ Ep.

Remark 2: In Proposition 1, we consider the extended
dynamics of the microgrid, i.e., system (1) together with

†As noticed in [17, Remark 2], the storage function Sp in (4) depends
on It, I, V and u. This is evident from replacing İt, İ and V̇ by the
corresponding dynamics in (1).

u̇ = ud. For the extended system, the states and input
are It, I, V, u and ud, respectively. This motivates us to
consider a storage function (4) depending on states It, I, V
and input u of the plant (see [18], [19] for further information
on passivity properties of extended dynamics of general
nonlinear systems).

III. PROBLEM FORMULATION

First, we notice that (2) can be expressed as

V = −RtĪt + u, (5a)

It = GV + Il. (5b)

Then, let us define the set‡

Ep := {(u, It, V ) ∈ R3n|(u, It, V ) satisfies (5)}. (6)

Before formulating the control objective concerning the PCC
voltages, we assume that for every DGU i ∈ V , there exists
a nominal reference voltage V ?i :

Assumption 1: (Nominal voltages). There exists a refer-
ence voltage V ?i > 0 at the PCC, for all i ∈ V .

Generally, in order to achieve an efficient demand and supply
matching, so avoiding the overstressing of a source, it is
desirable that the total load demand of the microgrid is
shared among all the DGUs proportionally to the generation
capacity of their corresponding energy sources (fair current
sharing). This desire is equivalent to achieve wiIti = wjItj
for all i, j ∈ V , where a relatively large value of wi ∈ R+

corresponds to a relatively small generation capacity of
DGU i. We call this desire “ideal current sharing” and, in
analogy with [6], [7] and [8], can be expressed as follows:

lim
t→∞

It(t) = It = W−11i?t , (7)

with W = diag(w1, . . . , wn), wi ∈ R+, for all i ∈ V and
i?t ∈ R+. More precisely, (2c) or, equivalently, (5b) implies
i?t = 1>(Z−1

l V + Il)/(1
>W−11). Moreover, we notice that

to achieve current sharing, each DGU needs to share with
its neighbours information on the generated current. Then,
let L = BΓB> denote the (weighted) Laplacian matrix
associated to the communication network, where Γ ∈ Rm×m
is a positive definite diagonal matrix describing the weights
on the edges.

However, achieving ideal current sharing, prescribes the
value of the required differences in voltages among the nodes
of the network. As a consequence, it is generally not possible
to control the voltage at each node towards the corresponding
desired value. For this reason, the voltage requirements are
generally relaxed and, as an alternative, several control ap-
proaches in the literature propose to regulate the (weighted)
“average voltage” across the whole microgrid towards a
global voltage set point [3], [6]–[8], where the sources with
the largest generation capacity determine the grid voltage,
i.e.,

lim
t→∞

1>W−1V (t) = 1>W−1V = 1>W−1V ?. (8)

‡Note that (u, It, V ) ∈ Ep ⇐⇒ (It,−R−1B>V , V , u) ∈ Ep.



We now observe that achieving ideal current sharing (7) and
average voltage regulation (8) is equivalent to satisfy the
following equalities:

B>WIt = 0 (9a)

V = V ? +WBη, (9b)

with η ∈ Rm. This motivated us to adopt an approach similar
to [14], [20]. More precisely, we propose the following
(equality constrained) optimization problem with the steady-
state equations (5) and desired objectives (9) as constraints§

minimize
(û,Ît,V̂ )∈Ep,η∈Rm

F(û, Ît, V̂ , η)

subject to: B>WÎt = 0, V̂ − V ∗ −WBη = 0,

(10)

where F(û, Ît, V̂ , η) ∈ C1 is a convex function in its
arguments¶. However, we note that even achieving ideal
current sharing preserving the average voltage of the mi-
crogrid may not always be desired, as it may introduce,
in some nodes of the microgrid, large voltage deviations
from the corresponding nominal value. Consider for instance
a DC microgrid with 2 DGUs interconnected through a
pure resistive line, the value of which is relatively large
(e.g., because the DGUs are physically distant). Moreover,
assume that the load demand in one of the DGUs is much
higher then the other. Then, in order to achieve ideal current
sharing, the DGUs need to share a relatively large current
through the interconnecting line, implying a relatively large
voltage deviation (with respect to the nominal value) at the
corresponding PCCs. Consequently, a steady-state solution
satisfying (10) may be not feasible in practical applications.
To address this issue, first we modify (10) as follows:

Objective 1: (Feasible current sharing).

minimize
(û,Ît,V̂ )∈Ep

F(û, Ît, V̂ ), (11)

with

F :=
α

2
‖û‖2 +

β

2
‖B>WÎt‖2Γ +

γ

2
‖V̂ − V ∗‖2, (12)

where α, β, γ ∈ R+ are design parameters.

Before providing the rationale of Objective 1, we introduce
a second control objective concerning the desired steady-state
value of the voltage. More precisely, in order to guarantee
a proper functioning of the connected loads, it is generally
required that the voltages remain within prescribed limits
(see for instance [21] and the references therein). Then,
differently from [3], [6]–[8], we consider in this paper the
following steady-state constraint:

Objective 2: (Voltage requirement).

Vmi ≤ lim
t→∞

Vi(t) ≤ VMi, (13)

§Note that we assume to know the load. This is a reasonable assumption
if controllable loads are considered. However, extending the results of this
paper towards controllable loads is left as an interesting future endeavor.
¶Let x be the state of the physical plant, x̂ denotes the corresponding

optimization variable. Moreover, x and x̂∗ denote the values of x and x̂
at steady-state, respectively.

where Vmi and VMi denote the minimum and maximum
permitted voltage value at the PCC of DGU i, for all i ∈ V .

Remark 3: (Rationale behind the control objectives).
The quadratic function (12) comprises three different terms
concerning (i) the control action, (ii) the current sharing and
(iii) the voltage deviation from the corresponding nominal
value. As a consequence, a solution to Objective 1 satisfying
also Objective 2, generally does not guarantee the achieve-
ment of ideal current sharing (7). This is indeed equivalent
to adopt a priority scale, where, in order to ensure a proper
functioning of the microgrid, the voltage requirement (13)
has a priority higher than current sharing. In other words,
we are interested in a feasible solution that permits to share
among the nodes of the microgrid the largest possible amount
of total demand in compliance with the voltage require-
ment (13). Moreover, we notice that, achieving Objective 1
and Objective 2 does not always exclude the achievement of
ideal current sharing.

IV. DISTRIBUTED PRIMAL-DUAL CONTROLLER

In this section we present a basic primal-dual dynamic
controller that achieve Objective 2 and (approximately) Ob-
jective 1. For the sake of exposition, in this subsection we
provisionally exclude the inequality constraints (13), i.e.,
Objective 2, from the feasibility set. However, we include
them in Subsection IV-A.

Consider the equality constrained optimization prob-
lem (11). Let λa, λb ∈ Rn denote the Lagrange multipliers
corresponding to the constraints V̂ + RtÎt − û = 0 and
Ît−GV̂ −Il = 0, respectively. Moreover, let λ = [λ>a , λ

>
b ]>

and xc = [û>, Î>t , V̂
>, λ>]>. The Lagrangian function

corresponding to the optimization problem (11) is

L(xc) := F+λ>b (Ît−GV̂ − Il)+λ>a (V̂ +RtÎt− û). (14)

Consequently, the first order optimality conditions are given
by Karush-Kuhn-Tucker (KKT) conditions, i.e.,

αû∗ − λ∗a = 0 (15a)

βLw Î∗t + λ∗b +Rtλ
∗
a = 0 (15b)

λ∗a −Gλ∗b + γ
(
V̂ ∗ − V ∗

)
= 0 (15c)

V̂ ∗ +RtÎ
∗
t − û∗ = 0 (15d)

Î∗t −GV̂ ∗ − Il = 0, (15e)

where Lw = WLW . Moreover, we notice that the optimiza-
tion problem is convex and the feasibility set Ep is nonempty.
As a consequence, the optimization problem satisfies Slater’s
condition and, therefore, strong duality holds [22]. Hence,
Î∗t , V̂

∗, û∗ are optimal if and only if there exist λ∗a, λ
∗
b

satisfying (15).
Now, consider the following dynamic controller, designed

using the primal-dual dynamics of the optimization prob-
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Fig. 1. Scheme of the proposed distributed primal-dual controller, where
j ∈ Ni and ξi = (Îti, V̂i, λbi), i ∈ V .

lem (11)

−τu ˙̂u = αû− λa − ν1 (16a)

−τI ˙̂
It = βLw Ît + λb +Rtλa (16b)

−τV ˙̂
V = λa −Gλb + γ

(
V̂ − V ∗

)
− ν2 (16c)

τaλ̇a = V̂ +RtÎt − û (16d)

τbλ̇b = Ît −GV̂ − Il, (16e)

where τu, τI , τV , τa, τb > 0 are design parameters. Let
ν = [ν>1 , ν

>
2 ]>, ν1, ν2 : R → Rn denote the controller

input ports, which will be used later to interconnect the
controller with the plant and to include the nodal constraints
(see Figure 1). We now define the forced equilibria set of
system (16), i.e.,

Epd := {xc, ν1, ν2|ẋc = 0, ν1 = ν∗1 , ν2 = ν∗2} , (17)

where ν∗1 , ν
∗
2 ∈ Rn.

Remark 4: (Unique steady state solution) Note that the
steady-state conditions of (16) represent the KKT condi-
tions of optimization problem (11) with F replaced by
F1 := F + û>ν∗1 + V̂ >ν∗2 . Since, the feasibility set Ep
of the optimization problem (11) is nonempty, Epd is also
nonempty. Also note that, given a pair of ν∗1 , ν

∗
2 , there exists

a unique xc such that (xc, ν
∗
1 , ν
∗
2 ) ∈ Epd.

Proposition 2: (Property of (16)) Let νd : R → R2n.
Then the following statements hold:

(a) The primal-dual controller (16), together with ν̇ = νd,
is passive with port variables νd, yc := [ ˙̂u>,

˙̂
V >]> and

storage function Sc(z, ν) = (1/2)‖ẋc‖2τ .
(b) Further for νd = 0, then the unforced dynamics con-

verge asymptotically to a point in Epd.
The proof (that we omit due to space limitation) follows from
computing the Lie derivative of Sc(z, ν) along the vector
fields of (16).

The passive dynamic controller (16) is now interconnected
to the microgrid (1) by choosing u = û and ν1 = −It (see
Figure 1). Consequently, we obtain the following closed loop

system

−Ltİt = V +RtIt − û
−Lİ = RI + B>V
CtV̇ = It + BI − Z−1

l V − Il
−τu ˙̂u = αû− λa + It

−τI ˙̂
It = βLw Ît + λb +Rtλa

−τV ˙̂
V = λa −Gλb + γ(V̂ − V ∗)− ν2

τaλ̇a = V̂ +RtÎt − û
τbλ̇b = Ît −GV̂ − Il.

(18)

The set of all feasible operating points of (18) is defined as

E1 := {(x, xc, ν2) | (x, û) ∈ Ep, (xc,−It, ν2) ∈ Epd} . (19)

We have the following basic result.
Proposition 3: (Preliminary result) Assume that E1 is

nonempty. Let ν̇2 = ν2d, ν2d : R→ Rn. Consider the closed-
loop system (18). Then the following statements hold:

(a) The interconnected system is passive with storage func-
tion S1 = Sp + Sc, and port-variables ˙̂

V with ν2d.
(b) Given ν2d = 0, the closed-loop system asymptotically

stabilizes to an operating point in E1.
Consider the operating points (It, I, V , u) ∈ Ep. From
Remark 1, we know that u completely defines the
operating point (It, I, V , u) ∈ Ep. If one considers
(u, Î∗t , V̂

∗, λ∗a, λ
∗
b ,−It, 0) ∈ Epd, then from Proposition 3

we have that (It, I, V , u, Î
∗
t , V̂

∗, λ∗a, λ
∗
b ,−It, 0) ∈ E1 is an

asymptotically stable equilibrium of the closed-loop sys-
tem (18). This implies that V̂ ∗ + RtÎ

∗
t − u = 0 and

Î∗t − GV̂ ∗ − Il = 0. Using G = BR−1B> + Z−1
l , this

simplifies to V̂ ∗ = (In + RtZ
−1
l )−1 (u−RtIl) and Î∗t =

−G(In +RtZ
−1
l )−1 (u−RtIl). Again from Remark 1, we

obtain V = V̂ ∗, It = Î∗t , and I = −R−1B>V̂ ∗.

A. Including nodal constraints

We now extend the results discussed in the previous
subsection to include nodal constraints on the voltages (see
Objective 2). In order to achieve this, we consider the
following optimization problem

minimize
(û,Ît,V̂ )∈Ep

F(û, Ît, V̂ )

subject to

g(V̂ ) =

[
gm(V̂ )

gM (V̂ )

]
=

[
Vm − V̂
V̂ − VM

]
≤ 0,

(20)

where Vm, VM ∈ Rn are chosen from practical consider-
ations. Therefore, we assume that there exist at least one
V̂ satisfying the inequality constraints strictly i.e., g(V̂ ) <
0 and the steady-state equations (2). As a consequence,
(20) satisfies Slater’s condition. This further implies that,
(Î∗t , V̂ , û

∗) is the optimal solution of (20), if and only if
there exist λ∗a, λ

∗
b ∈ Rn, µ∗m, µ

∗
M ∈ Rn≥0 that satisfy the



following KKT conditions

αû∗ − λ∗a = 0 (21a)

βLw Î∗t + λ∗b +Rtλ
∗
a = 0 (21b)

λ∗a −Gλ∗b + γ(V̂ ∗ − V ∗) + µ∗h − µ∗l = 0 (21c)

V̂ ∗ +RtÎ
∗
t − û∗ = 0 (21d)

Î∗t −GV̂ ∗ − Il = 0 (21e)

Vm − V̂ ≤ 0, µ∗m ≥ 0, µ∗>m (Vm − V̂ ∗) = 0 (21f)

V̂ − VM ≤ 0, µ∗M ≥ 0, µ∗>M (V̂ ∗ − VM ) = 0. (21g)

Denote µ = [µ>m, µ
>
M ]>. For i ∈ {1 · · · 2n}, let µi, gi(·)

denote the ith element of µ, g(·). We define the primal-dual
dynamics corresponding to the inequality constraint gi(ωi) ≤
0 as the following subsystem [10], [23]

τµi µ̇i = (gi(ωi))
+
µi

:=

{
gi(ωi) if µi > 0

max{0, gi(ωi)} if µi = 0
,

(22)
where τµi > 0, and µi, ωi : R → R denote the state and
input of the subsystem (22). The above dynamical system
has the following properties:
(i) When gi(ωi) < 0, µi = 0 then (gi(ωi))

+
µi

switches
from gi(ωi) to 0, which also ensures non-negativity of
µi(t). Hence, if the initial condition µi(0) ≥ 0, then
µ(t) ≥ 0, ∀t ≥ 0.

(ii) For a constant input ωi = ω∗i , the equilibrium set of
(22) is characterized by (µ∗i , ω

∗
i ) satisfying

Eµi = {(µ∗i , ω∗i )|gi(ω∗i ) ≤ 0, µ∗i ≥ 0, µ∗i (gi(ω
∗
i )) = 0} .

(23)
(iii) The overall dynamics of 2n inequality constraints are

compactly written as

τµµ̇ = ĝ(ω, µ) (24)

where τµ = diag{τµ1
, · · · , τµ2n

}, (gi(ωi))
+
µi

is the ith

component of ĝ(ω, µ).
System (24) has the following passivity property [24]–[26].

Proposition 4: (Property of (24)) Let P denotes the
power set of {1 · · · 2n}, define σ : [0,∞) → P as σ(t) =
{i|gi(ωi) < 0 and µi = 0,∀i ∈ {1 · · · 2n}}. Consider system
(24) with ω̇ = wd, wd : R→ Rn. Then the following hold.
(a) System (24) is passive with storage function Sσ(µ) =

(1/2)
∑
i/∈σ µ̇

2
i τµi

and supply-rate w>d ẏµ, where yµi
=

µi
∂gi
∂ωi

.
(b) Let wd = 0, and consider a constant w∗ ∈ Rn. ∀i ∈
{1 · · · 2n}, if there exist a (µ∗i , ω

∗
i ) ∈ Eµi

then (µ, ω∗)
converges to a point in ∪i∈{1···2n}Eµi .

The passive system (24) is now interconnected to (18) using
the following interconnection constraints

ωi = V̂i,

ωn+i = V̂i,

ν2i = − (µi − µn+i) ,

(25)

where ω = (ω1, · · · , ωn), V̂ = (V̂1, · · · , V̂n), ν2 =
(ν21 , · · · , ν2n), µm = (µ1, · · · , µn) and µM =

TABLE II
MICROGRID PARAMETERS

DGU 1 2 3 4
Zli(0) (Ω) 16.7 50.0 16.7 20.0
∆Gl (Ω−1) 0.03 0.02 −0.03 0.01
∆Ili (A) 0.0 0.0 75.0 0.0

(µn+1, · · · , µ2n). This gives the following closed loop sys-
tem

−Ltİt = V +RtIt − û
−Lİ = RI + B>V
CtV̇ = It + BI − Z−1

l V − Il
−τu ˙̂u = αû− λa − Ît
−τI ˙̂

It = βLw Ît + λb +Rtλa

−τV ˙̂
V = λa −Gλb + γ(V̂ − V ∗) + µM − µm

τaλ̇a = V̂ +RtÎt − û
τbλ̇b = Ît −GV̂ − Il

τµm µ̇m = (Vm − V̂ )+
µm

τµM
µ̇M = (V̂ − VM )+

µM
,

(26)

where τµm
= diag{τµ1

, · · · , τµn
}, and τµM

=
diag{τµn+1 , · · · , τµ2n}. We notice that the equilibrium
points of (26) are

E :=
{

(x, xc, µ) |(x, xc, µM − µm) ∈ E1, (µi, V̂i) ∈ Eµi
,

∀i ∈ {1 · · · 2n}} (27)

Now, we present the final result of the paper.
Proposition 5: (Main result) Assume that E is nonempty.

System (26) asymptotically converges to a point in E .

V. SIMULATION RESULTS

In this section, we validate in simulation the proposed
control strategy. We consider a DC microgrid with four
interconnected DGUs (see [15, Fig. 2]). The minimum and
maximum permitted voltage values at PCC of all DGUs are
set equal to 379 V and 381 V, respectively (see [15, Tables II,
III] and Table II, for other system parameters). The controller
parameters are τ(·) = 10−3, and α = β = γ = 1. For the
sake of illustration we consider the weighting matrix W to
be the identity matrix. Figures 2(a) and 2(b) show in the
first three seconds that the generated currents achieve ideal
current sharing and voltages are within the permitted values.
At the time instant t = 3 s, the load demand of node 3
is increased. Then, we observe that the generated voltages
converge to the corresponding upper and lower limits to
allow the largest possible sharing of load demand among
the DGUs.

VI. CONCLUSIONS AND FUTURE WORK

This paper explores the idea of using continuous time
primal-dual dynamics for controlling DC microgrids in order
to achieve current sharing and voltage regulation. We show
that the proposed control scheme asymptotically stabilizes
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Fig. 2. Time evolution of the voltage at the PCC of each DGU (a); ;
current generated by each DGU together (b).

the plant to a feasible operating point achieving the desired
goals. Interesting future research includes extensions towards
incorporating controllable loads [27] to address a social-
welfare optimization problem [14].

REFERENCES

[1] N. Hatziargyriou, Microgrids: architectures and control. John Wiley
& Sons, 2014.
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