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Notation

We chose to use the symbols in the book according to the following conventions. Scalar
values or signals are denoted by lowercase letters such as x, 4, and ¢. Vectors are indicated
by boldface and italic letters such as x and y and matrices by boldface and italic uppercase
letters such as A and B. The elements x,...,x, of a vector x or a,;,4,,,...,4,,, of a matrix
A are represented by italics. Let ® indicate the Kronecker product. The rth time derivative
of a signal x(), with » > 2, is denoted by x(")(¢). Sets are symbolized by calligraphic
letters such as & and %. The inequality P > 0O is interpreted in two different ways: re-
ferring to optimal control or linear matrix inequalities, P > 0 means that the matrix P is
positive definite; alternatively, we interpret the sign > as an elementwise relation to indi-
cate that all elements of the matrix P are positive (i.e., p; i> 0 for all z,7). Analogously,
the symbol ~ indicates similarity between two matrices or the Pontryagin difference be-
tween two sets. For any symmetric matrix A, A, (A) and A_; (A) denote the largest and
the smallest eigenvalues of matrix A, respectively. Given a matrix M € R"*” with n > m,
its orthogonal complement is M+ € R”*("=")_while M € R”*” is its Moore—Penrose
pseudoinverse. Let x -y denote the vector dot product and x X y denote the cross prod-
uct, while, given two functions f(-) and g(-), let f(-)o g(-) = f(g(-)) denote the function
composition. Let x(k + i|k) denote the value of x at the time instant k + 7 predicted at
the time instant k. Given a generic signal w, let Wy 1) be a signal defined from time ¢, to
time ¢,. Note that, to simplify the notation, when it is obvious from the context, we omit
the subscript [#,,2,]. The symbol zd represents the identity function from R to R. Finally,
we use || - || to denote the Euclidean norm, ||- ||, to denote the infinity norm, |-| to denote
the absolute value, and || - |[3, to denote the squared norm weighted by the matrix W. The
set of signals w, the values of which belong to a compact set #, is denoted by .4, , while
W = supy, oy 0]}

XiX
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Preface

This book deals with sliding mode control (SMC) of uncertain nonlinear systems, focusing
in particular on advanced and optimization based algorithms. The aim is to provide an
overview and critical discussion of the results published by the authors in recent years, so
as to organize them into a well-structured and consistent compendium. The book includes
a survey of classical SMC theory, along with the introduction of four different families of
advanced original SMC methods. Specifically, the new methods discussed in the book are
optimization based higher order sliding mode control (HOSM), integral HOSM control,
constrained HOSM, and networked event-triggered sliding mode control (ET-SMC).

In the first part of the book, after a tutorial review of classical SMC theory, we in-
troduce and theoretically analyze the advanced algorithms. We provide numerical results
to complement the theoretical treatment. In the second part of the book, we discuss ap-
plications of the considered algorithms as case studies. The application problems involve
complex robotic systems and microgrids. We report simulation and experimental results in
the book.

While the classical SMC theory can also be found in other research books and text-
books for graduate and postgraduate courses of study, the advanced algorithms presented
in this book were previously published only in journal papers. Moreover, they have never
been organized systematically as in this book, which will make these methods much more
understandable and usable by the scientific community. We discuss algorithms by adopting
common notation and referring, when possible, to the same illustrative example. This will
help the reader compare the advantages and limitations of the various approaches individ-
ually, but also identify, in any field implementation, the advanced SMC algorithm that is
more suitable to use.

The real applications considered in this book belong to the class of complex systems
because their models are nonlinear, they are affected by significant uncertainties, and their
state and inputs must comply with constraints. Such application examples often operate
in the presence of communication networks, which are intrinsic elements of the control
loop. They are taken as examples of typical real-world complex plants. By virtue of the
considered applications, this book can be a useful guide to practitioners, providing practical
rules for developing field implementations of the algorithms. The application examples also
constitute a significant proof of the validity of the advanced control concepts for the benefit
of researchers.

This book is aimed at a general readership, including students, researchers, and prac-
titioners with basic knowledge in control engineering, process physics, and applied math-
ematics. The authors also hope it will be useful and interesting in courses on advanced
automatic control for undergraduate and graduate students.

A. Ferrara, G. P. Incremona, and M. Cucuzzella
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